Uniform 8-polytope
![]() 8-simplex  |  ![]() Rectified 8-simplex  |  ![]() Truncated 8-simplex  | |||||||||
![]() Cantellated 8-simplex  |  ![]() Runcinated 8-simplex  |  ![]() Stericated 8-simplex  | |||||||||
![]() Pentellated 8-simplex  |  ![]() Hexicated 8-simplex  |  ![]() Heptellated 8-simplex  | |||||||||
![]() 8-orthoplex  |  ![]() Rectified 8-orthoplex  |  ![]() Truncated 8-orthoplex  | |||||||||
![]() Cantellated 8-orthoplex  |  ![]() Runcinated 8-orthoplex  | ||||||||||
![]() Hexicated 8-orthoplex  |  ![]() Cantellated 8-cube  | ||||||||||
![]() Runcinated 8-cube  |  ![]() Stericated 8-cube  |  ![]() Pentellated 8-cube  | |||||||||
![]() Hexicated 8-cube  |  ![]() Heptellated 8-cube  | ||||||||||
![]() 8-cube  |  ![]() Rectified 8-cube  |  ![]() Truncated 8-cube  | |||||||||
![]() 8-demicube  |  ![]() Truncated 8-demicube  |  ![]() Cantellated 8-demicube  | |||||||||
![]() Runcinated 8-demicube  |  ![]() Stericated 8-demicube  | ||||||||||
![]() Pentellated 8-demicube  |  ![]() Hexicated 8-demicube  | ||||||||||
![]() 421  |  ![]() 142  |  ![]() 241  | |||||||||
In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets.
A uniform 8-polytope is one which is vertex-transitive, and constructed from uniform 7-polytope facets.
Regular 8-polytopes
Regular 8-polytopes can be represented by the Schläfli symbol {p,q,r,s,t,u,v}, with v {p,q,r,s,t,u} 7-polytope facets around each peak.
There are exactly three such convex regular 8-polytopes:
- {3,3,3,3,3,3,3} - 8-simplex
 - {4,3,3,3,3,3,3} - 8-cube
 - {3,3,3,3,3,3,4} - 8-orthoplex
 
There are no nonconvex regular 8-polytopes.
Characteristics
The topology of any given 8-polytope is defined by its Betti numbers and torsion coefficients.[1]
The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 8-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.[1]
Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, and this led to the use of torsion coefficients.[1]
Uniform 8-polytopes by fundamental Coxeter groups
Uniform 8-polytopes with reflective symmetry can be generated by these four Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams:
| # | Coxeter group | Forms | ||
|---|---|---|---|---|
| 1 | A8 | [37] | 135 | |
| 2 | BC8 | [4,36] | 255 | |
| 3 | D8 | [35,1,1] | 191 (64 unique) | |
| 4 | E8 | [34,2,1] | 255 | |
Selected regular and uniform 8-polytopes from each family include:
- Simplex family: A8 [37] - 














 - 135 uniform 8-polytopes as permutations of rings in the group diagram, including one regular: 
- {37} - 8-simplex or ennea-9-tope or enneazetton - 















 
 - {37} - 8-simplex or ennea-9-tope or enneazetton - 
 
 - 135 uniform 8-polytopes as permutations of rings in the group diagram, including one regular: 
 - Hypercube/orthoplex family: B8 [4,36] - 














 - 255 uniform 8-polytopes as permutations of rings in the group diagram, including two regular ones: 
- {4,36} - 8-cube or octeract- 















 - {36,4} - 8-orthoplex or octacross - 















 
 - {4,36} - 8-cube or octeract- 
 
 - 255 uniform 8-polytopes as permutations of rings in the group diagram, including two regular ones: 
 - Demihypercube D8 family: [35,1,1] - 












 - 191 uniform 8-polytopes as permutations of rings in the group diagram, including: 
- {3,35,1} - 8-demicube or demiocteract, 151 - 












; also as h{4,36} 













. - {3,3,3,3,3,31,1} - 8-orthoplex, 511 - 













 
 - {3,35,1} - 8-demicube or demiocteract, 151 - 
 
 - 191 uniform 8-polytopes as permutations of rings in the group diagram, including: 
 - E-polytope family E8 family: [34,1,1] - 












 - 255 uniform 8-polytopes as permutations of rings in the group diagram, including: 
- {3,3,3,3,32,1} - Thorold Gosset's semiregular 421, 













 - {3,34,2} - the uniform 142, 












, - {3,3,34,1} - the uniform 241, 













 
 - {3,3,3,3,32,1} - Thorold Gosset's semiregular 421, 
 
 - 255 uniform 8-polytopes as permutations of rings in the group diagram, including: 
 
Uniform prismatic forms
There are many uniform prismatic families, including:
| Uniform 8-polytope prism families | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| # | Coxeter group | Coxeter-Dynkin diagram | |||||||||
| 7+1 | |||||||||||
| 1 | A7A1 | [3,3,3,3,3,3]×[ ] | |||||||||
| 2 | B7A1 | [4,3,3,3,3,3]×[ ] | |||||||||
| 3 | D7A1 | [34,1,1]×[ ] | |||||||||
| 4 | E7A1 | [33,2,1]×[ ] | |||||||||
| 6+2 | |||||||||||
| 1 | A6I2(p) | [3,3,3,3,3]×[p] | |||||||||
| 2 | B6I2(p) | [4,3,3,3,3]×[p] | |||||||||
| 3 | D6I2(p) | [33,1,1]×[p] | |||||||||
| 4 | E6I2(p) | [3,3,3,3,3]×[p] | |||||||||
| 6+1+1 | |||||||||||
| 1 | A6A1A1 | [3,3,3,3,3]×[ ]x[ ] | |||||||||
| 2 | B6A1A1 | [4,3,3,3,3]×[ ]x[ ] | |||||||||
| 3 | D6A1A1 | [33,1,1]×[ ]x[ ] | |||||||||
| 4 | E6A1A1 | [3,3,3,3,3]×[ ]x[ ] | |||||||||
| 5+3 | |||||||||||
| 1 | A5A3 | [34]×[3,3] | |||||||||
| 2 | B5A3 | [4,33]×[3,3] | |||||||||
| 3 | D5A3 | [32,1,1]×[3,3] | |||||||||
| 4 | A5B3 | [34]×[4,3] | |||||||||
| 5 | B5B3 | [4,33]×[4,3] | |||||||||
| 6 | D5B3 | [32,1,1]×[4,3] | |||||||||
| 7 | A5H3 | [34]×[5,3] | |||||||||
| 8 | B5H3 | [4,33]×[5,3] | |||||||||
| 9 | D5H3 | [32,1,1]×[5,3] | |||||||||
| 5+2+1 | |||||||||||
| 1 | A5I2(p)A1 | [3,3,3]×[p]×[ ] | |||||||||
| 2 | B5I2(p)A1 | [4,3,3]×[p]×[ ] | |||||||||
| 3 | D5I2(p)A1 | [32,1,1]×[p]×[ ] | |||||||||
| 5+1+1+1 | |||||||||||
| 1 | A5A1A1A1 | [3,3,3]×[ ]×[ ]×[ ] | |||||||||
| 2 | B5A1A1A1 | [4,3,3]×[ ]×[ ]×[ ] | |||||||||
| 3 | D5A1A1A1 | [32,1,1]×[ ]×[ ]×[ ] | |||||||||
| 4+4 | |||||||||||
| 1 | A4A4 | [3,3,3]×[3,3,3] | |||||||||
| 2 | B4A4 | [4,3,3]×[3,3,3] | |||||||||
| 3 | D4A4 | [31,1,1]×[3,3,3] | |||||||||
| 4 | F4A4 | [3,4,3]×[3,3,3] | |||||||||
| 5 | H4A4 | [5,3,3]×[3,3,3] | |||||||||
| 6 | B4B4 | [4,3,3]×[4,3,3] | |||||||||
| 7 | D4B4 | [31,1,1]×[4,3,3] | |||||||||
| 8 | F4B4 | [3,4,3]×[4,3,3] | |||||||||
| 9 | H4B4 | [5,3,3]×[4,3,3] | |||||||||
| 10 | D4D4 | [31,1,1]×[31,1,1] | |||||||||
| 11 | F4D4 | [3,4,3]×[31,1,1] | |||||||||
| 12 | H4D4 | [5,3,3]×[31,1,1] | |||||||||
| 13 | F4×F4 | [3,4,3]×[3,4,3] | |||||||||
| 14 | H4×F4 | [5,3,3]×[3,4,3] | |||||||||
| 15 | H4H4 | [5,3,3]×[5,3,3] | |||||||||
| 4+3+1 | |||||||||||
| 1 | A4A3A1 | [3,3,3]×[3,3]×[ ] | |||||||||
| 2 | A4B3A1 | [3,3,3]×[4,3]×[ ] | |||||||||
| 3 | A4H3A1 | [3,3,3]×[5,3]×[ ] | |||||||||
| 4 | B4A3A1 | [4,3,3]×[3,3]×[ ] | |||||||||
| 5 | B4B3A1 | [4,3,3]×[4,3]×[ ] | |||||||||
| 6 | B4H3A1 | [4,3,3]×[5,3]×[ ] | |||||||||
| 7 | H4A3A1 | [5,3,3]×[3,3]×[ ] | |||||||||
| 8 | H4B3A1 | [5,3,3]×[4,3]×[ ] | |||||||||
| 9 | H4H3A1 | [5,3,3]×[5,3]×[ ] | |||||||||
| 10 | F4A3A1 | [3,4,3]×[3,3]×[ ] | |||||||||
| 11 | F4B3A1 | [3,4,3]×[4,3]×[ ] | |||||||||
| 12 | F4H3A1 | [3,4,3]×[5,3]×[ ] | |||||||||
| 13 | D4A3A1 | [31,1,1]×[3,3]×[ ] | |||||||||
| 14 | D4B3A1 | [31,1,1]×[4,3]×[ ] | |||||||||
| 15 | D4H3A1 | [31,1,1]×[5,3]×[ ] | |||||||||
| 4+2+2 | |||||||||||
| ... | |||||||||||
| 4+2+1+1 | |||||||||||
| ... | |||||||||||
| 4+1+1+1+1 | |||||||||||
| ... | |||||||||||
| 3+3+2 | |||||||||||
| 1 | A3A3I2(p) | [3,3]×[3,3]×[p] | |||||||||
| 2 | B3A3I2(p) | [4,3]×[3,3]×[p] | |||||||||
| 3 | H3A3I2(p) | [5,3]×[3,3]×[p] | |||||||||
| 4 | B3B3I2(p) | [4,3]×[4,3]×[p] | |||||||||
| 5 | H3B3I2(p) | [5,3]×[4,3]×[p] | |||||||||
| 6 | H3H3I2(p) | [5,3]×[5,3]×[p] | |||||||||
| 3+3+1+1 | |||||||||||
| 1 | A32A12 | [3,3]×[3,3]×[ ]×[ ] | |||||||||
| 2 | B3A3A12 | [4,3]×[3,3]×[ ]×[ ] | |||||||||
| 3 | H3A3A12 | [5,3]×[3,3]×[ ]×[ ] | |||||||||
| 4 | B3B3A12 | [4,3]×[4,3]×[ ]×[ ] | |||||||||
| 5 | H3B3A12 | [5,3]×[4,3]×[ ]×[ ] | |||||||||
| 6 | H3H3A12 | [5,3]×[5,3]×[ ]×[ ] | |||||||||
| 3+2+2+1 | |||||||||||
| 1 | A3I2(p)I2(q)A1 | [3,3]×[p]×[q]×[ ] | |||||||||
| 2 | B3I2(p)I2(q)A1 | [4,3]×[p]×[q]×[ ] | |||||||||
| 3 | H3I2(p)I2(q)A1 | [5,3]×[p]×[q]×[ ] | |||||||||
| 3+2+1+1+1 | |||||||||||
| 1 | A3I2(p)A13 | [3,3]×[p]×[ ]x[ ]×[ ] | |||||||||
| 2 | B3I2(p)A13 | [4,3]×[p]×[ ]x[ ]×[ ] | |||||||||
| 3 | H3I2(p)A13 | [5,3]×[p]×[ ]x[ ]×[ ] | |||||||||
| 3+1+1+1+1+1 | |||||||||||
| 1 | A3A15 | [3,3]×[ ]x[ ]×[ ]x[ ]×[ ] | |||||||||
| 2 | B3A15 | [4,3]×[ ]x[ ]×[ ]x[ ]×[ ] | |||||||||
| 3 | H3A15 | [5,3]×[ ]x[ ]×[ ]x[ ]×[ ] | |||||||||
| 2+2+2+2 | |||||||||||
| 1 | I2(p)I2(q)I2(r)I2(s) | [p]×[q]×[r]×[s] | |||||||||
| 2+2+2+1+1 | |||||||||||
| 1 | I2(p)I2(q)I2(r)A12 | [p]×[q]×[r]×[ ]×[ ] | |||||||||
| 2+2+1+1+1+1 | |||||||||||
| 2 | I2(p)I2(q)A14 | [p]×[q]×[ ]×[ ]×[ ]×[ ] | |||||||||
| 2+1+1+1+1+1+1 | |||||||||||
| 1 | I2(p)A16 | [p]×[ ]×[ ]×[ ]×[ ]×[ ]×[ ] | |||||||||
| 1+1+1+1+1+1+1+1 | |||||||||||
| 1 | A18 | [ ]×[ ]×[ ]×[ ]×[ ]×[ ]×[ ]×[ ] | |||||||||
The A8 family
The A8 family has symmetry of order 362880 (9 factorial).
There are 135 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings (128+8-1 cases). These are all enumerated below. Bowers-style acronym names are given in parentheses for cross-referencing.
See also a list of 8-simplex polytopes for symmetric Coxeter plane graphs of these polytopes.
| A8 uniform polytopes | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| # | Coxeter-Dynkin diagram | Truncation indices  |  Johnson name (acronym)[2]  |  Basepoint | Element counts | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |||||||
| 1 |   
  |  t0 | 8-simplex (ene) | (0,0,0,0,0,0,0,0,1) | 9 | 36 | 84 | 126 | 126 | 84 | 36 | 9 | ||||||||
| 2 |   
  |  t1 | Rectified 8-simplex (rene) | (0,0,0,0,0,0,0,1,1) | 18 | 108 | 336 | 630 | 576 | 588 | 252 | 36 | ||||||||
| 3 |   
  |  t2 | Birectified 8-simplex (brene) | (0,0,0,0,0,0,1,1,1) | 18 | 144 | 588 | 1386 | 2016 | 1764 | 756 | 84 | ||||||||
| 4 |   
  |  t3 | Trirectified 8-simplex (trene) | (0,0,0,0,0,1,1,1,1) | 1260 | 126 | ||||||||||||||
| 5 |   
  |  t0,1 | Truncated 8-simplex (tene) | (0,0,0,0,0,0,0,1,2) | 288 | 72 | ||||||||||||||
| 6 |   
  |  t0,2 | Cantellated 8-simplex (srene) | (0,0,0,0,0,0,1,1,2) | 1764 | 252 | ||||||||||||||
| 7 |   
  |  t1,2 | Bitruncated 8-simplex (batene) | (0,0,0,0,0,0,1,2,2) | 1008 | 252 | ||||||||||||||
| 8 |   
  |  t0,3 | Runcinated 8-simplex (spene) | (0,0,0,0,0,1,1,1,2) | 4536 | 504 | ||||||||||||||
| 9 |   
  |  t1,3 | Bicantellated 8-simplex (sabrene) | (0,0,0,0,0,1,1,2,2) | 5292 | 756 | ||||||||||||||
| 10 |   
  |  t2,3 | Tritruncated 8-simplex (tatene) | (0,0,0,0,0,1,2,2,2) | 2016 | 504 | ||||||||||||||
| 11 |   
  |  t0,4 | Stericated 8-simplex (secane) | (0,0,0,0,1,1,1,1,2) | 6300 | 630 | ||||||||||||||
| 12 |   
  |  t1,4 | Biruncinated 8-simplex (sabpene) | (0,0,0,0,1,1,1,2,2) | 11340 | 1260 | ||||||||||||||
| 13 |   
  |  t2,4 | Tricantellated 8-simplex (satrene) | (0,0,0,0,1,1,2,2,2) | 8820 | 1260 | ||||||||||||||
| 14 |   
  |  t3,4 | Quadritruncated 8-simplex (be) | (0,0,0,0,1,2,2,2,2) | 2520 | 630 | ||||||||||||||
| 15 |   
  |  t0,5 | Pentellated 8-simplex (sotane) | (0,0,0,1,1,1,1,1,2) | 5040 | 504 | ||||||||||||||
| 16 |   
  |  t1,5 | Bistericated 8-simplex (sobcane) | (0,0,0,1,1,1,1,2,2) | 12600 | 1260 | ||||||||||||||
| 17 |   
  |  t2,5 | Triruncinated 8-simplex (satpeb) | (0,0,0,1,1,1,2,2,2) | 15120 | 1680 | ||||||||||||||
| 18 |   
  |  t0,6 | Hexicated 8-simplex (supane) | (0,0,1,1,1,1,1,1,2) | 2268 | 252 | ||||||||||||||
| 19 |   
  |  t1,6 | Bipentellated 8-simplex (sobteb) | (0,0,1,1,1,1,1,2,2) | 7560 | 756 | ||||||||||||||
| 20 |   
  |  t0,7 | Heptellated 8-simplex (soxeb) | (0,1,1,1,1,1,1,1,2) | 504 | 72 | ||||||||||||||
| 21 |   
  |  t0,1,2 | Cantitruncated 8-simplex (grene) | (0,0,0,0,0,0,1,2,3) | 2016 | 504 | ||||||||||||||
| 22 |   
  |  t0,1,3 | Runcitruncated 8-simplex (potane) | (0,0,0,0,0,1,1,2,3) | 9828 | 1512 | ||||||||||||||
| 23 |   
  |  t0,2,3 | Runcicantellated 8-simplex (prene) | (0,0,0,0,0,1,2,2,3) | 6804 | 1512 | ||||||||||||||
| 24 |   
  |  t1,2,3 | Bicantitruncated 8-simplex (gabrene) | (0,0,0,0,0,1,2,3,3) | 6048 | 1512 | ||||||||||||||
| 25 |   
  |  t0,1,4 | Steritruncated 8-simplex (catene) | (0,0,0,0,1,1,1,2,3) | 20160 | 2520 | ||||||||||||||
| 26 |   
  |  t0,2,4 | Stericantellated 8-simplex (crane) | (0,0,0,0,1,1,2,2,3) | 26460 | 3780 | ||||||||||||||
| 27 |   
  |  t1,2,4 | Biruncitruncated 8-simplex (biptene) | (0,0,0,0,1,1,2,3,3) | 22680 | 3780 | ||||||||||||||
| 28 |   
  |  t0,3,4 | Steriruncinated 8-simplex (capene) | (0,0,0,0,1,2,2,2,3) | 12600 | 2520 | ||||||||||||||
| 29 |   
  |  t1,3,4 | Biruncicantellated 8-simplex (biprene) | (0,0,0,0,1,2,2,3,3) | 18900 | 3780 | ||||||||||||||
| 30 |   
  |  t2,3,4 | Tricantitruncated 8-simplex (gatrene) | (0,0,0,0,1,2,3,3,3) | 10080 | 2520 | ||||||||||||||
| 31 |   
  |  t0,1,5 | Pentitruncated 8-simplex (tetane) | (0,0,0,1,1,1,1,2,3) | 21420 | 2520 | ||||||||||||||
| 32 |   
  |  t0,2,5 | Penticantellated 8-simplex (turane) | (0,0,0,1,1,1,2,2,3) | 42840 | 5040 | ||||||||||||||
| 33 |   
  |  t1,2,5 | Bisteritruncated 8-simplex (bictane) | (0,0,0,1,1,1,2,3,3) | 35280 | 5040 | ||||||||||||||
| 34 |   
  |  t0,3,5 | Pentiruncinated 8-simplex (topene) | (0,0,0,1,1,2,2,2,3) | 37800 | 5040 | ||||||||||||||
| 35 |   
  |  t1,3,5 | Bistericantellated 8-simplex (bocrane) | (0,0,0,1,1,2,2,3,3) | 52920 | 7560 | ||||||||||||||
| 36 |   
  |  t2,3,5 | Triruncitruncated 8-simplex (toprane) | (0,0,0,1,1,2,3,3,3) | 27720 | 5040 | ||||||||||||||
| 37 |   
  |  t0,4,5 | Pentistericated 8-simplex (tecane) | (0,0,0,1,2,2,2,2,3) | 13860 | 2520 | ||||||||||||||
| 38 |   
  |  t1,4,5 | Bisteriruncinated 8-simplex (bacpane) | (0,0,0,1,2,2,2,3,3) | 30240 | 5040 | ||||||||||||||
| 39 |   
  |  t0,1,6 | Hexitruncated 8-simplex (putene) | (0,0,1,1,1,1,1,2,3) | 12096 | 1512 | ||||||||||||||
| 40 |   
  |  t0,2,6 | Hexicantellated 8-simplex (purene) | (0,0,1,1,1,1,2,2,3) | 34020 | 3780 | ||||||||||||||
| 41 |   
  |  t1,2,6 | Bipentitruncated 8-simplex (bitotene) | (0,0,1,1,1,1,2,3,3) | 26460 | 3780 | ||||||||||||||
| 42 |   
  |  t0,3,6 | Hexiruncinated 8-simplex (pupene) | (0,0,1,1,1,2,2,2,3) | 45360 | 5040 | ||||||||||||||
| 43 |   
  |  t1,3,6 | Bipenticantellated 8-simplex (bitrene) | (0,0,1,1,1,2,2,3,3) | 60480 | 7560 | ||||||||||||||
| 44 |   
  |  t0,4,6 | Hexistericated 8-simplex (pucane) | (0,0,1,1,2,2,2,2,3) | 30240 | 3780 | ||||||||||||||
| 45 |   
  |  t0,5,6 | Hexipentellated 8-simplex (putane) | (0,0,1,2,2,2,2,2,3) | 9072 | 1512 | ||||||||||||||
| 46 |   
  |  t0,1,7 | Heptitruncated 8-simplex (xotane) | (0,1,1,1,1,1,1,2,3) | 3276 | 504 | ||||||||||||||
| 47 |   
  |  t0,2,7 | Hepticantellated 8-simplex (xorene)[3] | (0,1,1,1,1,1,2,2,3) | 12852 | 1512 | ||||||||||||||
| 48 |   
  |  t0,3,7 | Heptiruncinated 8-simplex (xapane) | (0,1,1,1,1,2,2,2,3) | 23940 | 2520 | ||||||||||||||
| 49 |   
  |  t0,1,2,3 | Runcicantitruncated 8-simplex (gapene) | (0,0,0,0,0,1,2,3,4) | 12096 | 3024 | ||||||||||||||
| 50 |   
  |  t0,1,2,4 | Stericantitruncated 8-simplex (cograne) | (0,0,0,0,1,1,2,3,4) | 45360 | 7560 | ||||||||||||||
| 51 |   
  |  t0,1,3,4 | Steriruncitruncated 8-simplex (coptane) | (0,0,0,0,1,2,2,3,4) | 34020 | 7560 | ||||||||||||||
| 52 |   
  |  t0,2,3,4 | Steriruncicantellated 8-simplex (coprene) | (0,0,0,0,1,2,3,3,4) | 34020 | 7560 | ||||||||||||||
| 53 |   
  |  t1,2,3,4 | Biruncicantitruncated 8-simplex (gabpene) | (0,0,0,0,1,2,3,4,4) | 30240 | 7560 | ||||||||||||||
| 54 |   
  |  t0,1,2,5 | Penticantitruncated 8-simplex (tograne) | (0,0,0,1,1,1,2,3,4) | 70560 | 10080 | ||||||||||||||
| 55 |   
  |  t0,1,3,5 | Pentiruncitruncated 8-simplex (taptane) | (0,0,0,1,1,2,2,3,4) | 98280 | 15120 | ||||||||||||||
| 56 |   
  |  t0,2,3,5 | Pentiruncicantellated 8-simplex (taprene) | (0,0,0,1,1,2,3,3,4) | 90720 | 15120 | ||||||||||||||
| 57 |   
  |  t1,2,3,5 | Bistericantitruncated 8-simplex (bocagrane) | (0,0,0,1,1,2,3,4,4) | 83160 | 15120 | ||||||||||||||
| 58 |   
  |  t0,1,4,5 | Pentisteritruncated 8-simplex (tectane) | (0,0,0,1,2,2,2,3,4) | 50400 | 10080 | ||||||||||||||
| 59 |   
  |  t0,2,4,5 | Pentistericantellated 8-simplex (tocrane) | (0,0,0,1,2,2,3,3,4) | 83160 | 15120 | ||||||||||||||
| 60 |   
  |  t1,2,4,5 | Bisteriruncitruncated 8-simplex (bicpotane) | (0,0,0,1,2,2,3,4,4) | 68040 | 15120 | ||||||||||||||
| 61 |   
  |  t0,3,4,5 | Pentisteriruncinated 8-simplex (tecpane) | (0,0,0,1,2,3,3,3,4) | 50400 | 10080 | ||||||||||||||
| 62 |   
  |  t1,3,4,5 | Bisteriruncicantellated 8-simplex (bicprene) | (0,0,0,1,2,3,3,4,4) | 75600 | 15120 | ||||||||||||||
| 63 |   
  |  t2,3,4,5 | Triruncicantitruncated 8-simplex (gatpeb) | (0,0,0,1,2,3,4,4,4) | 40320 | 10080 | ||||||||||||||
| 64 |   
  |  t0,1,2,6 | Hexicantitruncated 8-simplex (pugrane) | (0,0,1,1,1,1,2,3,4) | 52920 | 7560 | ||||||||||||||
| 65 |   
  |  t0,1,3,6 | Hexiruncitruncated 8-simplex (puptane) | (0,0,1,1,1,2,2,3,4) | 113400 | 15120 | ||||||||||||||
| 66 |   
  |  t0,2,3,6 | Hexiruncicantellated 8-simplex (puprene) | (0,0,1,1,1,2,3,3,4) | 98280 | 15120 | ||||||||||||||
| 67 |   
  |  t1,2,3,6 | Bipenticantitruncated 8-simplex (batograne) | (0,0,1,1,1,2,3,4,4) | 90720 | 15120 | ||||||||||||||
| 68 |   
  |  t0,1,4,6 | Hexisteritruncated 8-simplex (puctane) | (0,0,1,1,2,2,2,3,4) | 105840 | 15120 | ||||||||||||||
| 69 |   
  |  t0,2,4,6 | Hexistericantellated 8-simplex (pucrene) | (0,0,1,1,2,2,3,3,4) | 158760 | 22680 | ||||||||||||||
| 70 |   
  |  t1,2,4,6 | Bipentiruncitruncated 8-simplex (batpitane) | (0,0,1,1,2,2,3,4,4) | 136080 | 22680 | ||||||||||||||
| 71 |   
  |  t0,3,4,6 | Hexisteriruncinated 8-simplex (pocapine) | (0,0,1,1,2,3,3,3,4) | 90720 | 15120 | ||||||||||||||
| 72 |   
  |  t1,3,4,6 | Bipentiruncicantellated 8-simplex (bitprop) | (0,0,1,1,2,3,3,4,4) | 136080 | 22680 | ||||||||||||||
| 73 |   
  |  t0,1,5,6 | Hexipentitruncated 8-simplex (putatine) | (0,0,1,2,2,2,2,3,4) | 41580 | 7560 | ||||||||||||||
| 74 |   
  |  t0,2,5,6 | Hexipenticantellated 8-simplex (putarene) | (0,0,1,2,2,2,3,3,4) | 98280 | 15120 | ||||||||||||||
| 75 |   
  |  t1,2,5,6 | Bipentisteritruncated 8-simplex (batcotab) | (0,0,1,2,2,2,3,4,4) | 75600 | 15120 | ||||||||||||||
| 76 |   
  |  t0,3,5,6 | Hexipentiruncinated 8-simplex (putapene) | (0,0,1,2,2,3,3,3,4) | 98280 | 15120 | ||||||||||||||
| 77 |   
  |  t0,4,5,6 | Hexipentistericated 8-simplex (putacane) | (0,0,1,2,3,3,3,3,4) | 41580 | 7560 | ||||||||||||||
| 78 |   
  |  t0,1,2,7 | Hepticantitruncated 8-simplex (xograne) | (0,1,1,1,1,1,2,3,4) | 18144 | 3024 | ||||||||||||||
| 79 |   
  |  t0,1,3,7 | Heptiruncitruncated 8-simplex (xaptane) | (0,1,1,1,1,2,2,3,4) | 56700 | 7560 | ||||||||||||||
| 80 |   
  |  t0,2,3,7 | Heptiruncicantellated 8-simplex (xeprane) | (0,1,1,1,1,2,3,3,4) | 45360 | 7560 | ||||||||||||||
| 81 |   
  |  t0,1,4,7 | Heptisteritruncated 8-simplex (xactane) | (0,1,1,1,2,2,2,3,4) | 80640 | 10080 | ||||||||||||||
| 82 |   
  |  t0,2,4,7 | Heptistericantellated 8-simplex (xacrene) | (0,1,1,1,2,2,3,3,4) | 113400 | 15120 | ||||||||||||||
| 83 |   
  |  t0,3,4,7 | Heptisteriruncinated 8-simplex (xocapob) | (0,1,1,1,2,3,3,3,4) | 60480 | 10080 | ||||||||||||||
| 84 |   
  |  t0,1,5,7 | Heptipentitruncated 8-simplex (xotatine) | (0,1,1,2,2,2,2,3,4) | 56700 | 7560 | ||||||||||||||
| 85 |   
  |  t0,2,5,7 | Heptipenticantellated 8-simplex (xotrab) | (0,1,1,2,2,2,3,3,4) | 120960 | 15120 | ||||||||||||||
| 86 |   
  |  t0,1,6,7 | Heptihexitruncated 8-simplex (xupatab) | (0,1,2,2,2,2,2,3,4) | 18144 | 3024 | ||||||||||||||
| 87 |   
  |  t0,1,2,3,4 | Steriruncicantitruncated 8-simplex (gacene) | (0,0,0,0,1,2,3,4,5) | 60480 | 15120 | ||||||||||||||
| 88 |   
  |  t0,1,2,3,5 | Pentiruncicantitruncated 8-simplex (togapene) | (0,0,0,1,1,2,3,4,5) | 166320 | 30240 | ||||||||||||||
| 89 |   
  |  t0,1,2,4,5 | Pentistericantitruncated 8-simplex (tecograne) | (0,0,0,1,2,2,3,4,5) | 136080 | 30240 | ||||||||||||||
| 90 |   
  |  t0,1,3,4,5 | Pentisteriruncitruncated 8-simplex (tecpatane) | (0,0,0,1,2,3,3,4,5) | 136080 | 30240 | ||||||||||||||
| 91 |   
  |  t0,2,3,4,5 | Pentisteriruncicantellated 8-simplex (ticprane) | (0,0,0,1,2,3,4,4,5) | 136080 | 30240 | ||||||||||||||
| 92 |   
  |  t1,2,3,4,5 | Bisteriruncicantitruncated 8-simplex (gobcane) | (0,0,0,1,2,3,4,5,5) | 120960 | 30240 | ||||||||||||||
| 93 |   
  |  t0,1,2,3,6 | Hexiruncicantitruncated 8-simplex (pogapene) | (0,0,1,1,1,2,3,4,5) | 181440 | 30240 | ||||||||||||||
| 94 |   
  |  t0,1,2,4,6 | Hexistericantitruncated 8-simplex (pocagrane) | (0,0,1,1,2,2,3,4,5) | 272160 | 45360 | ||||||||||||||
| 95 |   
  |  t0,1,3,4,6 | Hexisteriruncitruncated 8-simplex (pocpatine) | (0,0,1,1,2,3,3,4,5) | 249480 | 45360 | ||||||||||||||
| 96 |   
  |  t0,2,3,4,6 | Hexisteriruncicantellated 8-simplex (pocpurene) | (0,0,1,1,2,3,4,4,5) | 249480 | 45360 | ||||||||||||||
| 97 |   
  |  t1,2,3,4,6 | Bipentiruncicantitruncated 8-simplex (botagpane) | (0,0,1,1,2,3,4,5,5) | 226800 | 45360 | ||||||||||||||
| 98 |   
  |  t0,1,2,5,6 | Hexipenticantitruncated 8-simplex (potagrene) | (0,0,1,2,2,2,3,4,5) | 151200 | 30240 | ||||||||||||||
| 99 |   
  |  t0,1,3,5,6 | Hexipentiruncitruncated 8-simplex (potaptane) | (0,0,1,2,2,3,3,4,5) | 249480 | 45360 | ||||||||||||||
| 100 |   
  |  t0,2,3,5,6 | Hexipentiruncicantellated 8-simplex (putaprene) | (0,0,1,2,2,3,4,4,5) | 226800 | 45360 | ||||||||||||||
| 101 |   
  |  t1,2,3,5,6 | Bipentistericantitruncated 8-simplex (betcagrane) | (0,0,1,2,2,3,4,5,5) | 204120 | 45360 | ||||||||||||||
| 102 |   
  |  t0,1,4,5,6 | Hexipentisteritruncated 8-simplex (putcatine) | (0,0,1,2,3,3,3,4,5) | 151200 | 30240 | ||||||||||||||
| 103 |   
  |  t0,2,4,5,6 | Hexipentistericantellated 8-simplex (potacrane) | (0,0,1,2,3,3,4,4,5) | 249480 | 45360 | ||||||||||||||
| 104 |   
  |  t0,3,4,5,6 | Hexipentisteriruncinated 8-simplex (potcapane) | (0,0,1,2,3,4,4,4,5) | 151200 | 30240 | ||||||||||||||
| 105 |   
  |  t0,1,2,3,7 | Heptiruncicantitruncated 8-simplex (xigpane) | (0,1,1,1,1,2,3,4,5) | 83160 | 15120 | ||||||||||||||
| 106 |   
  |  t0,1,2,4,7 | Heptistericantitruncated 8-simplex (xecagrane) | (0,1,1,1,2,2,3,4,5) | 196560 | 30240 | ||||||||||||||
| 107 |   
  |  t0,1,3,4,7 | Heptisteriruncitruncated 8-simplex (xucaptane) | (0,1,1,1,2,3,3,4,5) | 166320 | 30240 | ||||||||||||||
| 108 |   
  |  t0,2,3,4,7 | Heptisteriruncicantellated 8-simplex (xecaprane) | (0,1,1,1,2,3,4,4,5) | 166320 | 30240 | ||||||||||||||
| 109 |   
  |  t0,1,2,5,7 | Heptipenticantitruncated 8-simplex (xotagrane) | (0,1,1,2,2,2,3,4,5) | 196560 | 30240 | ||||||||||||||
| 110 |   
  |  t0,1,3,5,7 | Heptipentiruncitruncated 8-simplex (xitaptene) | (0,1,1,2,2,3,3,4,5) | 294840 | 45360 | ||||||||||||||
| 111 |   
  |  t0,2,3,5,7 | Heptipentiruncicantellated 8-simplex (xataprane) | (0,1,1,2,2,3,4,4,5) | 272160 | 45360 | ||||||||||||||
| 112 |   
  |  t0,1,4,5,7 | Heptipentisteritruncated 8-simplex (xotcatene) | (0,1,1,2,3,3,3,4,5) | 166320 | 30240 | ||||||||||||||
| 113 |   
  |  t0,1,2,6,7 | Heptihexicantitruncated 8-simplex (xopugrane) | (0,1,2,2,2,2,3,4,5) | 83160 | 15120 | ||||||||||||||
| 114 |   
  |  t0,1,3,6,7 | Heptihexiruncitruncated 8-simplex (xopupatane) | (0,1,2,2,2,3,3,4,5) | 196560 | 30240 | ||||||||||||||
| 115 |   
  |  t0,1,2,3,4,5 | Pentisteriruncicantitruncated 8-simplex (gotane) | (0,0,0,1,2,3,4,5,6) | 241920 | 60480 | ||||||||||||||
| 116 |   
  |  t0,1,2,3,4,6 | Hexisteriruncicantitruncated 8-simplex (pogacane) | (0,0,1,1,2,3,4,5,6) | 453600 | 90720 | ||||||||||||||
| 117 |   
  |  t0,1,2,3,5,6 | Hexipentiruncicantitruncated 8-simplex (potegpane) | (0,0,1,2,2,3,4,5,6) | 408240 | 90720 | ||||||||||||||
| 118 |   
  |  t0,1,2,4,5,6 | Hexipentistericantitruncated 8-simplex (potacagrane) | (0,0,1,2,3,3,4,5,6) | 408240 | 90720 | ||||||||||||||
| 119 |   
  |  t0,1,3,4,5,6 | Hexipentisteriruncitruncated 8-simplex (poticaptine) | (0,0,1,2,3,4,4,5,6) | 408240 | 90720 | ||||||||||||||
| 120 |   
  |  t0,2,3,4,5,6 | Hexipentisteriruncicantellated 8-simplex (poticoprane) | (0,0,1,2,3,4,5,5,6) | 408240 | 90720 | ||||||||||||||
| 121 |   
  |  t1,2,3,4,5,6 | Bipentisteriruncicantitruncated 8-simplex (gobteb) | (0,0,1,2,3,4,5,6,6) | 362880 | 90720 | ||||||||||||||
| 122 |   
  |  t0,1,2,3,4,7 | Heptisteriruncicantitruncated 8-simplex (xogacane) | (0,1,1,1,2,3,4,5,6) | 302400 | 60480 | ||||||||||||||
| 123 |   
  |  t0,1,2,3,5,7 | Heptipentiruncicantitruncated 8-simplex (xotagapane) | (0,1,1,2,2,3,4,5,6) | 498960 | 90720 | ||||||||||||||
| 124 |   
  |  t0,1,2,4,5,7 | Heptipentistericantitruncated 8-simplex (xotcagrane) | (0,1,1,2,3,3,4,5,6) | 453600 | 90720 | ||||||||||||||
| 125 |   
  |  t0,1,3,4,5,7 | Heptipentisteriruncitruncated 8-simplex (xotacaptane) | (0,1,1,2,3,4,4,5,6) | 453600 | 90720 | ||||||||||||||
| 126 |   
  |  t0,2,3,4,5,7 | Heptipentisteriruncicantellated 8-simplex (xotacaparb) | (0,1,1,2,3,4,5,5,6) | 453600 | 90720 | ||||||||||||||
| 127 |   
  |  t0,1,2,3,6,7 | Heptihexiruncicantitruncated 8-simplex (xupogapene) | (0,1,2,2,2,3,4,5,6) | 302400 | 60480 | ||||||||||||||
| 128 |   
  |  t0,1,2,4,6,7 | Heptihexistericantitruncated 8-simplex (xupcagrene) | (0,1,2,2,3,3,4,5,6) | 498960 | 90720 | ||||||||||||||
| 129 |   
  |  t0,1,3,4,6,7 | Heptihexisteriruncitruncated 8-simplex (xupacputob) | (0,1,2,2,3,4,4,5,6) | 453600 | 90720 | ||||||||||||||
| 130 |   
  |  t0,1,2,5,6,7 | Heptihexipenticantitruncated 8-simplex (xuptagrab) | (0,1,2,3,3,3,4,5,6) | 302400 | 60480 | ||||||||||||||
| 131 |   
  |  t0,1,2,3,4,5,6 | Hexipentisteriruncicantitruncated 8-simplex (gupane) | (0,0,1,2,3,4,5,6,7) | 725760 | 181440 | ||||||||||||||
| 132 |   
  |  t0,1,2,3,4,5,7 | Heptipentisteriruncicantitruncated 8-simplex (xogtane) | (0,1,1,2,3,4,5,6,7) | 816480 | 181440 | ||||||||||||||
| 133 |   
  |  t0,1,2,3,4,6,7 | Heptihexisteriruncicantitruncated 8-simplex (xupogacane) | (0,1,2,2,3,4,5,6,7) | 816480 | 181440 | ||||||||||||||
| 134 |   
  |  t0,1,2,3,5,6,7 | Heptihexipentiruncicantitruncated 8-simplex (xuptagapene) | (0,1,2,3,3,4,5,6,7) | 816480 | 181440 | ||||||||||||||
| 135 |   
  |  t0,1,2,3,4,5,6,7 | Omnitruncated 8-simplex (goxeb) | (0,1,2,3,4,5,6,7,8) | 1451520 | 362880 | ||||||||||||||
The B8 family
The B8 family has symmetry of order 10321920 (8 factorial x 28). There are 255 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.
See also a list of B8 polytopes for symmetric Coxeter plane graphs of these polytopes.
| B8 uniform polytopes | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| # | Coxeter-Dynkin diagram | Schläfli symbol  |  Name | Element counts | ||||||||
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |||||
| 1 | t0{36,4} | 8-orthoplex Diacosipentacontahexazetton (ek)  |  256 | 1024 | 1792 | 1792 | 1120 | 448 | 112 | 16 | ||
| 2 | t1{36,4} | Rectified 8-orthoplex Rectified diacosipentacontahexazetton (rek)  |  272 | 3072 | 8960 | 12544 | 10080 | 4928 | 1344 | 112 | ||
| 3 | t2{36,4} | Birectified 8-orthoplex Birectified diacosipentacontahexazetton (bark)  |  272 | 3184 | 16128 | 34048 | 36960 | 22400 | 6720 | 448 | ||
| 4 | t3{36,4} | Trirectified 8-orthoplex Trirectified diacosipentacontahexazetton (tark)  |  272 | 3184 | 16576 | 48384 | 71680 | 53760 | 17920 | 1120 | ||
| 5 | t3{4,36} | Trirectified 8-cube Trirectified octeract (tro)  |  272 | 3184 | 16576 | 47712 | 80640 | 71680 | 26880 | 1792 | ||
| 6 | t2{4,36} | Birectified 8-cube Birectified octeract (bro)  |  272 | 3184 | 14784 | 36960 | 55552 | 50176 | 21504 | 1792 | ||
| 7 | t1{4,36} | Rectified 8-cube Rectified octeract (recto)  |  272 | 2160 | 7616 | 15456 | 19712 | 16128 | 7168 | 1024 | ||
| 8 | t0{4,36} | 8-cube Octeract (octo)  |  16 | 112 | 448 | 1120 | 1792 | 1792 | 1024 | 256 | ||
| 9 | t0,1{36,4} | Truncated 8-orthoplex Truncated diacosipentacontahexazetton (tek)  |  1456 | 224 | ||||||||
| 10 | t0,2{36,4} | Cantellated 8-orthoplex Small rhombated diacosipentacontahexazetton (srek)  |  14784 | 1344 | ||||||||
| 11 | t1,2{36,4} | Bitruncated 8-orthoplex Bitruncated diacosipentacontahexazetton (batek)  |  8064 | 1344 | ||||||||
| 12 | t0,3{36,4} | Runcinated 8-orthoplex Small prismated diacosipentacontahexazetton (spek)  |  60480 | 4480 | ||||||||
| 13 | t1,3{36,4} | Bicantellated 8-orthoplex Small birhombated diacosipentacontahexazetton (sabork)  |  67200 | 6720 | ||||||||
| 14 | t2,3{36,4} | Tritruncated 8-orthoplex Tritruncated diacosipentacontahexazetton (tatek)  |  24640 | 4480 | ||||||||
| 15 | t0,4{36,4} | Stericated 8-orthoplex Small cellated diacosipentacontahexazetton (scak)  |  125440 | 8960 | ||||||||
| 16 | t1,4{36,4} | Biruncinated 8-orthoplex Small biprismated diacosipentacontahexazetton (sabpek)  |  215040 | 17920 | ||||||||
| 17 | t2,4{36,4} | Tricantellated 8-orthoplex Small trirhombated diacosipentacontahexazetton (satrek)  |  161280 | 17920 | ||||||||
| 18 | t3,4{4,36} | Quadritruncated 8-cube Octeractidiacosipentacontahexazetton (oke)  |  44800 | 8960 | ||||||||
| 19 | t0,5{36,4} | Pentellated 8-orthoplex Small terated diacosipentacontahexazetton (setek)  |  134400 | 10752 | ||||||||
| 20 | t1,5{36,4} | Bistericated 8-orthoplex Small bicellated diacosipentacontahexazetton (sibcak)  |  322560 | 26880 | ||||||||
| 21 | t2,5{4,36} | Triruncinated 8-cube Small triprismato-octeractidiacosipentacontahexazetton (sitpoke)  |  376320 | 35840 | ||||||||
| 22 | t2,4{4,36} | Tricantellated 8-cube Small trirhombated octeract (satro)  |  215040 | 26880 | ||||||||
| 23 | t2,3{4,36} | Tritruncated 8-cube Tritruncated octeract (tato)  |  48384 | 10752 | ||||||||
| 24 | t0,6{36,4} | Hexicated 8-orthoplex Small petated diacosipentacontahexazetton (supek)  |  64512 | 7168 | ||||||||
| 25 | t1,6{4,36} | Bipentellated 8-cube Small biteri-octeractidiacosipentacontahexazetton (sabtoke)  |  215040 | 21504 | ||||||||
| 26 | t1,5{4,36} | Bistericated 8-cube Small bicellated octeract (sobco)  |  358400 | 35840 | ||||||||
| 27 | t1,4{4,36} | Biruncinated 8-cube Small biprismated octeract (sabepo)  |  322560 | 35840 | ||||||||
| 28 | t1,3{4,36} | Bicantellated 8-cube Small birhombated octeract (subro)  |  150528 | 21504 | ||||||||
| 29 | t1,2{4,36} | Bitruncated 8-cube Bitruncated octeract (bato)  |  28672 | 7168 | ||||||||
| 30 | t0,7{4,36} | Heptellated 8-cube Small exi-octeractidiacosipentacontahexazetton (saxoke)  |  14336 | 2048 | ||||||||
| 31 | t0,6{4,36} | Hexicated 8-cube Small petated octeract (supo)  |  64512 | 7168 | ||||||||
| 32 | t0,5{4,36} | Pentellated 8-cube Small terated octeract (soto)  |  143360 | 14336 | ||||||||
| 33 | t0,4{4,36} | Stericated 8-cube Small cellated octeract (soco)  |  179200 | 17920 | ||||||||
| 34 | t0,3{4,36} | Runcinated 8-cube Small prismated octeract (sopo)  |  129024 | 14336 | ||||||||
| 35 | t0,2{4,36} | Cantellated 8-cube Small rhombated octeract (soro)  |  50176 | 7168 | ||||||||
| 36 | t0,1{4,36} | Truncated 8-cube Truncated octeract (tocto)  |  8192 | 2048 | ||||||||
| 37 | t0,1,2{36,4} | Cantitruncated 8-orthoplex Great rhombated diacosipentacontahexazetton  |  16128 | 2688 | ||||||||
| 38 | t0,1,3{36,4} | Runcitruncated 8-orthoplex Prismatotruncated diacosipentacontahexazetton  |  127680 | 13440 | ||||||||
| 39 | t0,2,3{36,4} | Runcicantellated 8-orthoplex Prismatorhombated diacosipentacontahexazetton  |  80640 | 13440 | ||||||||
| 40 | t1,2,3{36,4} | Bicantitruncated 8-orthoplex Great birhombated diacosipentacontahexazetton  |  73920 | 13440 | ||||||||
| 41 | t0,1,4{36,4} | Steritruncated 8-orthoplex Cellitruncated diacosipentacontahexazetton  |  394240 | 35840 | ||||||||
| 42 | t0,2,4{36,4} | Stericantellated 8-orthoplex Cellirhombated diacosipentacontahexazetton  |  483840 | 53760 | ||||||||
| 43 | t1,2,4{36,4} | Biruncitruncated 8-orthoplex Biprismatotruncated diacosipentacontahexazetton  |  430080 | 53760 | ||||||||
| 44 | t0,3,4{36,4} | Steriruncinated 8-orthoplex Celliprismated diacosipentacontahexazetton  |  215040 | 35840 | ||||||||
| 45 | t1,3,4{36,4} | Biruncicantellated 8-orthoplex Biprismatorhombated diacosipentacontahexazetton  |  322560 | 53760 | ||||||||
| 46 | t2,3,4{36,4} | Tricantitruncated 8-orthoplex Great trirhombated diacosipentacontahexazetton  |  179200 | 35840 | ||||||||
| 47 | t0,1,5{36,4} | Pentitruncated 8-orthoplex Teritruncated diacosipentacontahexazetton  |  564480 | 53760 | ||||||||
| 48 | t0,2,5{36,4} | Penticantellated 8-orthoplex Terirhombated diacosipentacontahexazetton  |  1075200 | 107520 | ||||||||
| 49 | t1,2,5{36,4} | Bisteritruncated 8-orthoplex Bicellitruncated diacosipentacontahexazetton  |  913920 | 107520 | ||||||||
| 50 | t0,3,5{36,4} | Pentiruncinated 8-orthoplex Teriprismated diacosipentacontahexazetton  |  913920 | 107520 | ||||||||
| 51 | t1,3,5{36,4} | Bistericantellated 8-orthoplex Bicellirhombated diacosipentacontahexazetton  |  1290240 | 161280 | ||||||||
| 52 | t2,3,5{36,4} | Triruncitruncated 8-orthoplex Triprismatotruncated diacosipentacontahexazetton  |  698880 | 107520 | ||||||||
| 53 | t0,4,5{36,4} | Pentistericated 8-orthoplex Tericellated diacosipentacontahexazetton  |  322560 | 53760 | ||||||||
| 54 | t1,4,5{36,4} | Bisteriruncinated 8-orthoplex Bicelliprismated diacosipentacontahexazetton  |  698880 | 107520 | ||||||||
| 55 | t2,3,5{4,36} | Triruncitruncated 8-cube Triprismatotruncated octeract  |  645120 | 107520 | ||||||||
| 56 | t2,3,4{4,36} | Tricantitruncated 8-cube Great trirhombated octeract  |  241920 | 53760 | ||||||||
| 57 | t0,1,6{36,4} | Hexitruncated 8-orthoplex Petitruncated diacosipentacontahexazetton  |  344064 | 43008 | ||||||||
| 58 | t0,2,6{36,4} | Hexicantellated 8-orthoplex Petirhombated diacosipentacontahexazetton  |  967680 | 107520 | ||||||||
| 59 | t1,2,6{36,4} | Bipentitruncated 8-orthoplex Biteritruncated diacosipentacontahexazetton  |  752640 | 107520 | ||||||||
| 60 | t0,3,6{36,4} | Hexiruncinated 8-orthoplex Petiprismated diacosipentacontahexazetton  |  1290240 | 143360 | ||||||||
| 61 | t1,3,6{36,4} | Bipenticantellated 8-orthoplex Biterirhombated diacosipentacontahexazetton  |  1720320 | 215040 | ||||||||
| 62 | t1,4,5{4,36} | Bisteriruncinated 8-cube Bicelliprismated octeract  |  860160 | 143360 | ||||||||
| 63 | t0,4,6{36,4} | Hexistericated 8-orthoplex Peticellated diacosipentacontahexazetton  |  860160 | 107520 | ||||||||
| 64 | t1,3,6{4,36} | Bipenticantellated 8-cube Biterirhombated octeract  |  1720320 | 215040 | ||||||||
| 65 | t1,3,5{4,36} | Bistericantellated 8-cube Bicellirhombated octeract  |  1505280 | 215040 | ||||||||
| 66 | t1,3,4{4,36} | Biruncicantellated 8-cube Biprismatorhombated octeract  |  537600 | 107520 | ||||||||
| 67 | t0,5,6{36,4} | Hexipentellated 8-orthoplex Petiterated diacosipentacontahexazetton  |  258048 | 43008 | ||||||||
| 68 | t1,2,6{4,36} | Bipentitruncated 8-cube Biteritruncated octeract  |  752640 | 107520 | ||||||||
| 69 | t1,2,5{4,36} | Bisteritruncated 8-cube Bicellitruncated octeract  |  1003520 | 143360 | ||||||||
| 70 | t1,2,4{4,36} | Biruncitruncated 8-cube Biprismatotruncated octeract  |  645120 | 107520 | ||||||||
| 71 | t1,2,3{4,36} | Bicantitruncated 8-cube Great birhombated octeract  |  172032 | 43008 | ||||||||
| 72 | t0,1,7{36,4} | Heptitruncated 8-orthoplex Exitruncated diacosipentacontahexazetton  |  93184 | 14336 | ||||||||
| 73 | t0,2,7{36,4} | Hepticantellated 8-orthoplex Exirhombated diacosipentacontahexazetton  |  365568 | 43008 | ||||||||
| 74 | t0,5,6{4,36} | Hexipentellated 8-cube Petiterated octeract  |  258048 | 43008 | ||||||||
| 75 | t0,3,7{36,4} | Heptiruncinated 8-orthoplex Exiprismated diacosipentacontahexazetton  |  680960 | 71680 | ||||||||
| 76 | t0,4,6{4,36} | Hexistericated 8-cube Peticellated octeract  |  860160 | 107520 | ||||||||
| 77 | t0,4,5{4,36} | Pentistericated 8-cube Tericellated octeract  |  394240 | 71680 | ||||||||
| 78 | t0,3,7{4,36} | Heptiruncinated 8-cube Exiprismated octeract  |  680960 | 71680 | ||||||||
| 79 | t0,3,6{4,36} | Hexiruncinated 8-cube Petiprismated octeract  |  1290240 | 143360 | ||||||||
| 80 | t0,3,5{4,36} | Pentiruncinated 8-cube Teriprismated octeract  |  1075200 | 143360 | ||||||||
| 81 | t0,3,4{4,36} | Steriruncinated 8-cube Celliprismated octeract  |  358400 | 71680 | ||||||||
| 82 | t0,2,7{4,36} | Hepticantellated 8-cube Exirhombated octeract  |  365568 | 43008 | ||||||||
| 83 | t0,2,6{4,36} | Hexicantellated 8-cube Petirhombated octeract  |  967680 | 107520 | ||||||||
| 84 | t0,2,5{4,36} | Penticantellated 8-cube Terirhombated octeract  |  1218560 | 143360 | ||||||||
| 85 | t0,2,4{4,36} | Stericantellated 8-cube Cellirhombated octeract  |  752640 | 107520 | ||||||||
| 86 | t0,2,3{4,36} | Runcicantellated 8-cube Prismatorhombated octeract  |  193536 | 43008 | ||||||||
| 87 | t0,1,7{4,36} | Heptitruncated 8-cube Exitruncated octeract  |  93184 | 14336 | ||||||||
| 88 | t0,1,6{4,36} | Hexitruncated 8-cube Petitruncated octeract  |  344064 | 43008 | ||||||||
| 89 | t0,1,5{4,36} | Pentitruncated 8-cube Teritruncated octeract  |  609280 | 71680 | ||||||||
| 90 | t0,1,4{4,36} | Steritruncated 8-cube Cellitruncated octeract  |  573440 | 71680 | ||||||||
| 91 | t0,1,3{4,36} | Runcitruncated 8-cube Prismatotruncated octeract  |  279552 | 43008 | ||||||||
| 92 | t0,1,2{4,36} | Cantitruncated 8-cube Great rhombated octeract  |  57344 | 14336 | ||||||||
| 93 | t0,1,2,3{36,4} | Runcicantitruncated 8-orthoplex Great prismated diacosipentacontahexazetton  |  147840 | 26880 | ||||||||
| 94 | t0,1,2,4{36,4} | Stericantitruncated 8-orthoplex Celligreatorhombated diacosipentacontahexazetton  |  860160 | 107520 | ||||||||
| 95 | t0,1,3,4{36,4} | Steriruncitruncated 8-orthoplex Celliprismatotruncated diacosipentacontahexazetton  |  591360 | 107520 | ||||||||
| 96 | t0,2,3,4{36,4} | Steriruncicantellated 8-orthoplex Celliprismatorhombated diacosipentacontahexazetton  |  591360 | 107520 | ||||||||
| 97 | t1,2,3,4{36,4} | Biruncicantitruncated 8-orthoplex Great biprismated diacosipentacontahexazetton  |  537600 | 107520 | ||||||||
| 98 | t0,1,2,5{36,4} | Penticantitruncated 8-orthoplex Terigreatorhombated diacosipentacontahexazetton  |  1827840 | 215040 | ||||||||
| 99 | t0,1,3,5{36,4} | Pentiruncitruncated 8-orthoplex Teriprismatotruncated diacosipentacontahexazetton  |  2419200 | 322560 | ||||||||
| 100 | t0,2,3,5{36,4} | Pentiruncicantellated 8-orthoplex Teriprismatorhombated diacosipentacontahexazetton  |  2257920 | 322560 | ||||||||
| 101 | t1,2,3,5{36,4} | Bistericantitruncated 8-orthoplex Bicelligreatorhombated diacosipentacontahexazetton  |  2096640 | 322560 | ||||||||
| 102 | t0,1,4,5{36,4} | Pentisteritruncated 8-orthoplex Tericellitruncated diacosipentacontahexazetton  |  1182720 | 215040 | ||||||||
| 103 | t0,2,4,5{36,4} | Pentistericantellated 8-orthoplex Tericellirhombated diacosipentacontahexazetton  |  1935360 | 322560 | ||||||||
| 104 | t1,2,4,5{36,4} | Bisteriruncitruncated 8-orthoplex Bicelliprismatotruncated diacosipentacontahexazetton  |  1612800 | 322560 | ||||||||
| 105 | t0,3,4,5{36,4} | Pentisteriruncinated 8-orthoplex Tericelliprismated diacosipentacontahexazetton  |  1182720 | 215040 | ||||||||
| 106 | t1,3,4,5{36,4} | Bisteriruncicantellated 8-orthoplex Bicelliprismatorhombated diacosipentacontahexazetton  |  1774080 | 322560 | ||||||||
| 107 | t2,3,4,5{4,36} | Triruncicantitruncated 8-cube Great triprismato-octeractidiacosipentacontahexazetton  |  967680 | 215040 | ||||||||
| 108 | t0,1,2,6{36,4} | Hexicantitruncated 8-orthoplex Petigreatorhombated diacosipentacontahexazetton  |  1505280 | 215040 | ||||||||
| 109 | t0,1,3,6{36,4} | Hexiruncitruncated 8-orthoplex Petiprismatotruncated diacosipentacontahexazetton  |  3225600 | 430080 | ||||||||
| 110 | t0,2,3,6{36,4} | Hexiruncicantellated 8-orthoplex Petiprismatorhombated diacosipentacontahexazetton  |  2795520 | 430080 | ||||||||
| 111 | t1,2,3,6{36,4} | Bipenticantitruncated 8-orthoplex Biterigreatorhombated diacosipentacontahexazetton  |  2580480 | 430080 | ||||||||
| 112 | t0,1,4,6{36,4} | Hexisteritruncated 8-orthoplex Peticellitruncated diacosipentacontahexazetton  |  3010560 | 430080 | ||||||||
| 113 | t0,2,4,6{36,4} | Hexistericantellated 8-orthoplex Peticellirhombated diacosipentacontahexazetton  |  4515840 | 645120 | ||||||||
| 114 | t1,2,4,6{36,4} | Bipentiruncitruncated 8-orthoplex Biteriprismatotruncated diacosipentacontahexazetton  |  3870720 | 645120 | ||||||||
| 115 | t0,3,4,6{36,4} | Hexisteriruncinated 8-orthoplex Peticelliprismated diacosipentacontahexazetton  |  2580480 | 430080 | ||||||||
| 116 | t1,3,4,6{4,36} | Bipentiruncicantellated 8-cube Biteriprismatorhombi-octeractidiacosipentacontahexazetton  |  3870720 | 645120 | ||||||||
| 117 | t1,3,4,5{4,36} | Bisteriruncicantellated 8-cube Bicelliprismatorhombated octeract  |  2150400 | 430080 | ||||||||
| 118 | t0,1,5,6{36,4} | Hexipentitruncated 8-orthoplex Petiteritruncated diacosipentacontahexazetton  |  1182720 | 215040 | ||||||||
| 119 | t0,2,5,6{36,4} | Hexipenticantellated 8-orthoplex Petiterirhombated diacosipentacontahexazetton  |  2795520 | 430080 | ||||||||
| 120 | t1,2,5,6{4,36} | Bipentisteritruncated 8-cube Bitericellitrunki-octeractidiacosipentacontahexazetton  |  2150400 | 430080 | ||||||||
| 121 | t0,3,5,6{36,4} | Hexipentiruncinated 8-orthoplex Petiteriprismated diacosipentacontahexazetton  |  2795520 | 430080 | ||||||||
| 122 | t1,2,4,6{4,36} | Bipentiruncitruncated 8-cube Biteriprismatotruncated octeract  |  3870720 | 645120 | ||||||||
| 123 | t1,2,4,5{4,36} | Bisteriruncitruncated 8-cube Bicelliprismatotruncated octeract  |  1935360 | 430080 | ||||||||
| 124 | t0,4,5,6{36,4} | Hexipentistericated 8-orthoplex Petitericellated diacosipentacontahexazetton  |  1182720 | 215040 | ||||||||
| 125 | t1,2,3,6{4,36} | Bipenticantitruncated 8-cube Biterigreatorhombated octeract  |  2580480 | 430080 | ||||||||
| 126 | t1,2,3,5{4,36} | Bistericantitruncated 8-cube Bicelligreatorhombated octeract  |  2365440 | 430080 | ||||||||
| 127 | t1,2,3,4{4,36} | Biruncicantitruncated 8-cube Great biprismated octeract  |  860160 | 215040 | ||||||||
| 128 | t0,1,2,7{36,4} | Hepticantitruncated 8-orthoplex Exigreatorhombated diacosipentacontahexazetton  |  516096 | 86016 | ||||||||
| 129 | t0,1,3,7{36,4} | Heptiruncitruncated 8-orthoplex Exiprismatotruncated diacosipentacontahexazetton  |  1612800 | 215040 | ||||||||
| 130 | t0,2,3,7{36,4} | Heptiruncicantellated 8-orthoplex Exiprismatorhombated diacosipentacontahexazetton  |  1290240 | 215040 | ||||||||
| 131 | t0,4,5,6{4,36} | Hexipentistericated 8-cube Petitericellated octeract  |  1182720 | 215040 | ||||||||
| 132 | t0,1,4,7{36,4} | Heptisteritruncated 8-orthoplex Exicellitruncated diacosipentacontahexazetton  |  2293760 | 286720 | ||||||||
| 133 | t0,2,4,7{36,4} | Heptistericantellated 8-orthoplex Exicellirhombated diacosipentacontahexazetton  |  3225600 | 430080 | ||||||||
| 134 | t0,3,5,6{4,36} | Hexipentiruncinated 8-cube Petiteriprismated octeract  |  2795520 | 430080 | ||||||||
| 135 | t0,3,4,7{4,36} | Heptisteriruncinated 8-cube Exicelliprismato-octeractidiacosipentacontahexazetton  |  1720320 | 286720 | ||||||||
| 136 | t0,3,4,6{4,36} | Hexisteriruncinated 8-cube Peticelliprismated octeract  |  2580480 | 430080 | ||||||||
| 137 | t0,3,4,5{4,36} | Pentisteriruncinated 8-cube Tericelliprismated octeract  |  1433600 | 286720 | ||||||||
| 138 | t0,1,5,7{36,4} | Heptipentitruncated 8-orthoplex Exiteritruncated diacosipentacontahexazetton  |  1612800 | 215040 | ||||||||
| 139 | t0,2,5,7{4,36} | Heptipenticantellated 8-cube Exiterirhombi-octeractidiacosipentacontahexazetton  |  3440640 | 430080 | ||||||||
| 140 | t0,2,5,6{4,36} | Hexipenticantellated 8-cube Petiterirhombated octeract  |  2795520 | 430080 | ||||||||
| 141 | t0,2,4,7{4,36} | Heptistericantellated 8-cube Exicellirhombated octeract  |  3225600 | 430080 | ||||||||
| 142 | t0,2,4,6{4,36} | Hexistericantellated 8-cube Peticellirhombated octeract  |  4515840 | 645120 | ||||||||
| 143 | t0,2,4,5{4,36} | Pentistericantellated 8-cube Tericellirhombated octeract  |  2365440 | 430080 | ||||||||
| 144 | t0,2,3,7{4,36} | Heptiruncicantellated 8-cube Exiprismatorhombated octeract  |  1290240 | 215040 | ||||||||
| 145 | t0,2,3,6{4,36} | Hexiruncicantellated 8-cube Petiprismatorhombated octeract  |  2795520 | 430080 | ||||||||
| 146 | t0,2,3,5{4,36} | Pentiruncicantellated 8-cube Teriprismatorhombated octeract  |  2580480 | 430080 | ||||||||
| 147 | t0,2,3,4{4,36} | Steriruncicantellated 8-cube Celliprismatorhombated octeract  |  967680 | 215040 | ||||||||
| 148 | t0,1,6,7{4,36} | Heptihexitruncated 8-cube Exipetitrunki-octeractidiacosipentacontahexazetton  |  516096 | 86016 | ||||||||
| 149 | t0,1,5,7{4,36} | Heptipentitruncated 8-cube Exiteritruncated octeract  |  1612800 | 215040 | ||||||||
| 150 | t0,1,5,6{4,36} | Hexipentitruncated 8-cube Petiteritruncated octeract  |  1182720 | 215040 | ||||||||
| 151 | t0,1,4,7{4,36} | Heptisteritruncated 8-cube Exicellitruncated octeract  |  2293760 | 286720 | ||||||||
| 152 | t0,1,4,6{4,36} | Hexisteritruncated 8-cube Peticellitruncated octeract  |  3010560 | 430080 | ||||||||
| 153 | t0,1,4,5{4,36} | Pentisteritruncated 8-cube Tericellitruncated octeract  |  1433600 | 286720 | ||||||||
| 154 | t0,1,3,7{4,36} | Heptiruncitruncated 8-cube Exiprismatotruncated octeract  |  1612800 | 215040 | ||||||||
| 155 | t0,1,3,6{4,36} | Hexiruncitruncated 8-cube Petiprismatotruncated octeract  |  3225600 | 430080 | ||||||||
| 156 | t0,1,3,5{4,36} | Pentiruncitruncated 8-cube Teriprismatotruncated octeract  |  2795520 | 430080 | ||||||||
| 157 | t0,1,3,4{4,36} | Steriruncitruncated 8-cube Celliprismatotruncated octeract  |  967680 | 215040 | ||||||||
| 158 | t0,1,2,7{4,36} | Hepticantitruncated 8-cube Exigreatorhombated octeract  |  516096 | 86016 | ||||||||
| 159 | t0,1,2,6{4,36} | Hexicantitruncated 8-cube Petigreatorhombated octeract  |  1505280 | 215040 | ||||||||
| 160 | t0,1,2,5{4,36} | Penticantitruncated 8-cube Terigreatorhombated octeract  |  2007040 | 286720 | ||||||||
| 161 | t0,1,2,4{4,36} | Stericantitruncated 8-cube Celligreatorhombated octeract  |  1290240 | 215040 | ||||||||
| 162 | t0,1,2,3{4,36} | Runcicantitruncated 8-cube Great prismated octeract  |  344064 | 86016 | ||||||||
| 163 | t0,1,2,3,4{36,4} | Steriruncicantitruncated 8-orthoplex Great cellated diacosipentacontahexazetton  |  1075200 | 215040 | ||||||||
| 164 | t0,1,2,3,5{36,4} | Pentiruncicantitruncated 8-orthoplex Terigreatoprismated diacosipentacontahexazetton  |  4193280 | 645120 | ||||||||
| 165 | t0,1,2,4,5{36,4} | Pentistericantitruncated 8-orthoplex Tericelligreatorhombated diacosipentacontahexazetton  |  3225600 | 645120 | ||||||||
| 166 | t0,1,3,4,5{36,4} | Pentisteriruncitruncated 8-orthoplex Tericelliprismatotruncated diacosipentacontahexazetton  |  3225600 | 645120 | ||||||||
| 167 | t0,2,3,4,5{36,4} | Pentisteriruncicantellated 8-orthoplex Tericelliprismatorhombated diacosipentacontahexazetton  |  3225600 | 645120 | ||||||||
| 168 | t1,2,3,4,5{36,4} | Bisteriruncicantitruncated 8-orthoplex Great bicellated diacosipentacontahexazetton  |  2903040 | 645120 | ||||||||
| 169 | t0,1,2,3,6{36,4} | Hexiruncicantitruncated 8-orthoplex Petigreatoprismated diacosipentacontahexazetton  |  5160960 | 860160 | ||||||||
| 170 | t0,1,2,4,6{36,4} | Hexistericantitruncated 8-orthoplex Peticelligreatorhombated diacosipentacontahexazetton  |  7741440 | 1290240 | ||||||||
| 171 | t0,1,3,4,6{36,4} | Hexisteriruncitruncated 8-orthoplex Peticelliprismatotruncated diacosipentacontahexazetton  |  7096320 | 1290240 | ||||||||
| 172 | t0,2,3,4,6{36,4} | Hexisteriruncicantellated 8-orthoplex Peticelliprismatorhombated diacosipentacontahexazetton  |  7096320 | 1290240 | ||||||||
| 173 | t1,2,3,4,6{36,4} | Bipentiruncicantitruncated 8-orthoplex Biterigreatoprismated diacosipentacontahexazetton  |  6451200 | 1290240 | ||||||||
| 174 | t0,1,2,5,6{36,4} | Hexipenticantitruncated 8-orthoplex Petiterigreatorhombated diacosipentacontahexazetton  |  4300800 | 860160 | ||||||||
| 175 | t0,1,3,5,6{36,4} | Hexipentiruncitruncated 8-orthoplex Petiteriprismatotruncated diacosipentacontahexazetton  |  7096320 | 1290240 | ||||||||
| 176 | t0,2,3,5,6{36,4} | Hexipentiruncicantellated 8-orthoplex Petiteriprismatorhombated diacosipentacontahexazetton  |  6451200 | 1290240 | ||||||||
| 177 | t1,2,3,5,6{36,4} | Bipentistericantitruncated 8-orthoplex Bitericelligreatorhombated diacosipentacontahexazetton  |  5806080 | 1290240 | ||||||||
| 178 | t0,1,4,5,6{36,4} | Hexipentisteritruncated 8-orthoplex Petitericellitruncated diacosipentacontahexazetton  |  4300800 | 860160 | ||||||||
| 179 | t0,2,4,5,6{36,4} | Hexipentistericantellated 8-orthoplex Petitericellirhombated diacosipentacontahexazetton  |  7096320 | 1290240 | ||||||||
| 180 | t1,2,3,5,6{4,36} | Bipentistericantitruncated 8-cube Bitericelligreatorhombated octeract  |  5806080 | 1290240 | ||||||||
| 181 | t0,3,4,5,6{36,4} | Hexipentisteriruncinated 8-orthoplex Petitericelliprismated diacosipentacontahexazetton  |  4300800 | 860160 | ||||||||
| 182 | t1,2,3,4,6{4,36} | Bipentiruncicantitruncated 8-cube Biterigreatoprismated octeract  |  6451200 | 1290240 | ||||||||
| 183 | t1,2,3,4,5{4,36} | Bisteriruncicantitruncated 8-cube Great bicellated octeract  |  3440640 | 860160 | ||||||||
| 184 | t0,1,2,3,7{36,4} | Heptiruncicantitruncated 8-orthoplex Exigreatoprismated diacosipentacontahexazetton  |  2365440 | 430080 | ||||||||
| 185 | t0,1,2,4,7{36,4} | Heptistericantitruncated 8-orthoplex Exicelligreatorhombated diacosipentacontahexazetton  |  5591040 | 860160 | ||||||||
| 186 | t0,1,3,4,7{36,4} | Heptisteriruncitruncated 8-orthoplex Exicelliprismatotruncated diacosipentacontahexazetton  |  4730880 | 860160 | ||||||||
| 187 | t0,2,3,4,7{36,4} | Heptisteriruncicantellated 8-orthoplex Exicelliprismatorhombated diacosipentacontahexazetton  |  4730880 | 860160 | ||||||||
| 188 | t0,3,4,5,6{4,36} | Hexipentisteriruncinated 8-cube Petitericelliprismated octeract  |  4300800 | 860160 | ||||||||
| 189 | t0,1,2,5,7{36,4} | Heptipenticantitruncated 8-orthoplex Exiterigreatorhombated diacosipentacontahexazetton  |  5591040 | 860160 | ||||||||
| 190 | t0,1,3,5,7{36,4} | Heptipentiruncitruncated 8-orthoplex Exiteriprismatotruncated diacosipentacontahexazetton  |  8386560 | 1290240 | ||||||||
| 191 | t0,2,3,5,7{36,4} | Heptipentiruncicantellated 8-orthoplex Exiteriprismatorhombated diacosipentacontahexazetton  |  7741440 | 1290240 | ||||||||
| 192 | t0,2,4,5,6{4,36} | Hexipentistericantellated 8-cube Petitericellirhombated octeract  |  7096320 | 1290240 | ||||||||
| 193 | t0,1,4,5,7{36,4} | Heptipentisteritruncated 8-orthoplex Exitericellitruncated diacosipentacontahexazetton  |  4730880 | 860160 | ||||||||
| 194 | t0,2,3,5,7{4,36} | Heptipentiruncicantellated 8-cube Exiteriprismatorhombated octeract  |  7741440 | 1290240 | ||||||||
| 195 | t0,2,3,5,6{4,36} | Hexipentiruncicantellated 8-cube Petiteriprismatorhombated octeract  |  6451200 | 1290240 | ||||||||
| 196 | t0,2,3,4,7{4,36} | Heptisteriruncicantellated 8-cube Exicelliprismatorhombated octeract  |  4730880 | 860160 | ||||||||
| 197 | t0,2,3,4,6{4,36} | Hexisteriruncicantellated 8-cube Peticelliprismatorhombated octeract  |  7096320 | 1290240 | ||||||||
| 198 | t0,2,3,4,5{4,36} | Pentisteriruncicantellated 8-cube Tericelliprismatorhombated octeract  |  3870720 | 860160 | ||||||||
| 199 | t0,1,2,6,7{36,4} | Heptihexicantitruncated 8-orthoplex Exipetigreatorhombated diacosipentacontahexazetton  |  2365440 | 430080 | ||||||||
| 200 | t0,1,3,6,7{36,4} | Heptihexiruncitruncated 8-orthoplex Exipetiprismatotruncated diacosipentacontahexazetton  |  5591040 | 860160 | ||||||||
| 201 | t0,1,4,5,7{4,36} | Heptipentisteritruncated 8-cube Exitericellitruncated octeract  |  4730880 | 860160 | ||||||||
| 202 | t0,1,4,5,6{4,36} | Hexipentisteritruncated 8-cube Petitericellitruncated octeract  |  4300800 | 860160 | ||||||||
| 203 | t0,1,3,6,7{4,36} | Heptihexiruncitruncated 8-cube Exipetiprismatotruncated octeract  |  5591040 | 860160 | ||||||||
| 204 | t0,1,3,5,7{4,36} | Heptipentiruncitruncated 8-cube Exiteriprismatotruncated octeract  |  8386560 | 1290240 | ||||||||
| 205 | t0,1,3,5,6{4,36} | Hexipentiruncitruncated 8-cube Petiteriprismatotruncated octeract  |  7096320 | 1290240 | ||||||||
| 206 | t0,1,3,4,7{4,36} | Heptisteriruncitruncated 8-cube Exicelliprismatotruncated octeract  |  4730880 | 860160 | ||||||||
| 207 | t0,1,3,4,6{4,36} | Hexisteriruncitruncated 8-cube Peticelliprismatotruncated octeract  |  7096320 | 1290240 | ||||||||
| 208 | t0,1,3,4,5{4,36} | Pentisteriruncitruncated 8-cube Tericelliprismatotruncated octeract  |  3870720 | 860160 | ||||||||
| 209 | t0,1,2,6,7{4,36} | Heptihexicantitruncated 8-cube Exipetigreatorhombated octeract  |  2365440 | 430080 | ||||||||
| 210 | t0,1,2,5,7{4,36} | Heptipenticantitruncated 8-cube Exiterigreatorhombated octeract  |  5591040 | 860160 | ||||||||
| 211 | t0,1,2,5,6{4,36} | Hexipenticantitruncated 8-cube Petiterigreatorhombated octeract  |  4300800 | 860160 | ||||||||
| 212 | t0,1,2,4,7{4,36} | Heptistericantitruncated 8-cube Exicelligreatorhombated octeract  |  5591040 | 860160 | ||||||||
| 213 | t0,1,2,4,6{4,36} | Hexistericantitruncated 8-cube Peticelligreatorhombated octeract  |  7741440 | 1290240 | ||||||||
| 214 | t0,1,2,4,5{4,36} | Pentistericantitruncated 8-cube Tericelligreatorhombated octeract  |  3870720 | 860160 | ||||||||
| 215 | t0,1,2,3,7{4,36} | Heptiruncicantitruncated 8-cube Exigreatoprismated octeract  |  2365440 | 430080 | ||||||||
| 216 | t0,1,2,3,6{4,36} | Hexiruncicantitruncated 8-cube Petigreatoprismated octeract  |  5160960 | 860160 | ||||||||
| 217 | t0,1,2,3,5{4,36} | Pentiruncicantitruncated 8-cube Terigreatoprismated octeract  |  4730880 | 860160 | ||||||||
| 218 | t0,1,2,3,4{4,36} | Steriruncicantitruncated 8-cube Great cellated octeract  |  1720320 | 430080 | ||||||||
| 219 | t0,1,2,3,4,5{36,4} | Pentisteriruncicantitruncated 8-orthoplex Great terated diacosipentacontahexazetton  |  5806080 | 1290240 | ||||||||
| 220 | t0,1,2,3,4,6{36,4} | Hexisteriruncicantitruncated 8-orthoplex Petigreatocellated diacosipentacontahexazetton  |  12902400 | 2580480 | ||||||||
| 221 | t0,1,2,3,5,6{36,4} | Hexipentiruncicantitruncated 8-orthoplex Petiterigreatoprismated diacosipentacontahexazetton  |  11612160 | 2580480 | ||||||||
| 222 | t0,1,2,4,5,6{36,4} | Hexipentistericantitruncated 8-orthoplex Petitericelligreatorhombated diacosipentacontahexazetton  |  11612160 | 2580480 | ||||||||
| 223 | t0,1,3,4,5,6{36,4} | Hexipentisteriruncitruncated 8-orthoplex Petitericelliprismatotruncated diacosipentacontahexazetton  |  11612160 | 2580480 | ||||||||
| 224 | t0,2,3,4,5,6{36,4} | Hexipentisteriruncicantellated 8-orthoplex Petitericelliprismatorhombated diacosipentacontahexazetton  |  11612160 | 2580480 | ||||||||
| 225 | t1,2,3,4,5,6{4,36} | Bipentisteriruncicantitruncated 8-cube Great biteri-octeractidiacosipentacontahexazetton  |  10321920 | 2580480 | ||||||||
| 226 | t0,1,2,3,4,7{36,4} | Heptisteriruncicantitruncated 8-orthoplex Exigreatocellated diacosipentacontahexazetton  |  8601600 | 1720320 | ||||||||
| 227 | t0,1,2,3,5,7{36,4} | Heptipentiruncicantitruncated 8-orthoplex Exiterigreatoprismated diacosipentacontahexazetton  |  14192640 | 2580480 | ||||||||
| 228 | t0,1,2,4,5,7{36,4} | Heptipentistericantitruncated 8-orthoplex Exitericelligreatorhombated diacosipentacontahexazetton  |  12902400 | 2580480 | ||||||||
| 229 | t0,1,3,4,5,7{36,4} | Heptipentisteriruncitruncated 8-orthoplex Exitericelliprismatotruncated diacosipentacontahexazetton  |  12902400 | 2580480 | ||||||||
| 230 | t0,2,3,4,5,7{4,36} | Heptipentisteriruncicantellated 8-cube Exitericelliprismatorhombi-octeractidiacosipentacontahexazetton  |  12902400 | 2580480 | ||||||||
| 231 | t0,2,3,4,5,6{4,36} | Hexipentisteriruncicantellated 8-cube Petitericelliprismatorhombated octeract  |  11612160 | 2580480 | ||||||||
| 232 | t0,1,2,3,6,7{36,4} | Heptihexiruncicantitruncated 8-orthoplex Exipetigreatoprismated diacosipentacontahexazetton  |  8601600 | 1720320 | ||||||||
| 233 | t0,1,2,4,6,7{36,4} | Heptihexistericantitruncated 8-orthoplex Exipeticelligreatorhombated diacosipentacontahexazetton  |  14192640 | 2580480 | ||||||||
| 234 | t0,1,3,4,6,7{4,36} | Heptihexisteriruncitruncated 8-cube Exipeticelliprismatotrunki-octeractidiacosipentacontahexazetton  |  12902400 | 2580480 | ||||||||
| 235 | t0,1,3,4,5,7{4,36} | Heptipentisteriruncitruncated 8-cube Exitericelliprismatotruncated octeract  |  12902400 | 2580480 | ||||||||
| 236 | t0,1,3,4,5,6{4,36} | Hexipentisteriruncitruncated 8-cube Petitericelliprismatotruncated octeract  |  11612160 | 2580480 | ||||||||
| 237 | t0,1,2,5,6,7{4,36} | Heptihexipenticantitruncated 8-cube Exipetiterigreatorhombi-octeractidiacosipentacontahexazetton  |  8601600 | 1720320 | ||||||||
| 238 | t0,1,2,4,6,7{4,36} | Heptihexistericantitruncated 8-cube Exipeticelligreatorhombated octeract  |  14192640 | 2580480 | ||||||||
| 239 | t0,1,2,4,5,7{4,36} | Heptipentistericantitruncated 8-cube Exitericelligreatorhombated octeract  |  12902400 | 2580480 | ||||||||
| 240 | t0,1,2,4,5,6{4,36} | Hexipentistericantitruncated 8-cube Petitericelligreatorhombated octeract  |  11612160 | 2580480 | ||||||||
| 241 | t0,1,2,3,6,7{4,36} | Heptihexiruncicantitruncated 8-cube Exipetigreatoprismated octeract  |  8601600 | 1720320 | ||||||||
| 242 | t0,1,2,3,5,7{4,36} | Heptipentiruncicantitruncated 8-cube Exiterigreatoprismated octeract  |  14192640 | 2580480 | ||||||||
| 243 | t0,1,2,3,5,6{4,36} | Hexipentiruncicantitruncated 8-cube Petiterigreatoprismated octeract  |  11612160 | 2580480 | ||||||||
| 244 | t0,1,2,3,4,7{4,36} | Heptisteriruncicantitruncated 8-cube Exigreatocellated octeract  |  8601600 | 1720320 | ||||||||
| 245 | t0,1,2,3,4,6{4,36} | Hexisteriruncicantitruncated 8-cube Petigreatocellated octeract  |  12902400 | 2580480 | ||||||||
| 246 | t0,1,2,3,4,5{4,36} | Pentisteriruncicantitruncated 8-cube Great terated octeract  |  6881280 | 1720320 | ||||||||
| 247 | t0,1,2,3,4,5,6{36,4} | Hexipentisteriruncicantitruncated 8-orthoplex Great petated diacosipentacontahexazetton  |  20643840 | 5160960 | ||||||||
| 248 | t0,1,2,3,4,5,7{36,4} | Heptipentisteriruncicantitruncated 8-orthoplex Exigreatoterated diacosipentacontahexazetton  |  23224320 | 5160960 | ||||||||
| 249 | t0,1,2,3,4,6,7{36,4} | Heptihexisteriruncicantitruncated 8-orthoplex Exipetigreatocellated diacosipentacontahexazetton  |  23224320 | 5160960 | ||||||||
| 250 | t0,1,2,3,5,6,7{36,4} | Heptihexipentiruncicantitruncated 8-orthoplex Exipetiterigreatoprismated diacosipentacontahexazetton  |  23224320 | 5160960 | ||||||||
| 251 | t0,1,2,3,5,6,7{4,36} | Heptihexipentiruncicantitruncated 8-cube Exipetiterigreatoprismated octeract  |  23224320 | 5160960 | ||||||||
| 252 | t0,1,2,3,4,6,7{4,36} | Heptihexisteriruncicantitruncated 8-cube Exipetigreatocellated octeract  |  23224320 | 5160960 | ||||||||
| 253 | t0,1,2,3,4,5,7{4,36} | Heptipentisteriruncicantitruncated 8-cube Exigreatoterated octeract  |  23224320 | 5160960 | ||||||||
| 254 | t0,1,2,3,4,5,6{4,36} | Hexipentisteriruncicantitruncated 8-cube Great petated octeract  |  20643840 | 5160960 | ||||||||
| 255 | t0,1,2,3,4,5,6,7{4,36} | Omnitruncated 8-cube Great exi-octeractidiacosipentacontahexazetton  |  41287680 | 10321920 | ||||||||
The D8 family
The D8 family has symmetry of order 5,160,960 (8 factorial x 27).
This family has 191 Wythoffian uniform polytopes, from 3x64-1 permutations of the D8 Coxeter-Dynkin diagram with one or more rings. 127 (2x64-1) are repeated from the B8 family and 64 are unique to this family, all listed below.
See list of D8 polytopes for Coxeter plane graphs of these polytopes.
| D8 uniform polytopes | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| # | Coxeter-Dynkin diagram | Name | Base point (Alternately signed)  |  Element counts | Circumrad | |||||||||
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |||||||
| 1 | =  |  8-demicube h{4,3,3,3,3,3,3}  |  (1,1,1,1,1,1,1,1) | 144 | 1136 | 4032 | 8288 | 10752 | 7168 | 1792 | 128 | 1.0000000 | ||
| 2 | =  |  cantic 8-cube h2{4,3,3,3,3,3,3}  |  (1,1,3,3,3,3,3,3) | 23296 | 3584 | 2.6457512 | ||||||||
| 3 | =  |  runcic 8-cube h3{4,3,3,3,3,3,3}  |  (1,1,1,3,3,3,3,3) | 64512 | 7168 | 2.4494896 | ||||||||
| 4 | =  |  steric 8-cube h4{4,3,3,3,3,3,3}  |  (1,1,1,1,3,3,3,3) | 98560 | 8960 | 2.2360678 | ||||||||
| 5 | =  |  pentic 8-cube h5{4,3,3,3,3,3,3}  |  (1,1,1,1,1,3,3,3) | 89600 | 7168 | 1.9999999 | ||||||||
| 6 | =  |  hexic 8-cube h6{4,3,3,3,3,3,3}  |  (1,1,1,1,1,1,3,3) | 48384 | 3584 | 1.7320508 | ||||||||
| 7 | =  |  heptic 8-cube h7{4,3,3,3,3,3,3}  |  (1,1,1,1,1,1,1,3) | 14336 | 1024 | 1.4142135 | ||||||||
| 8 | =  |  runcicantic 8-cube h2,3{4,3,3,3,3,3,3}  |  (1,1,3,5,5,5,5,5) | 86016 | 21504 | 4.1231055 | ||||||||
| 9 | =  |  stericantic 8-cube h2,4{4,3,3,3,3,3,3}  |  (1,1,3,3,5,5,5,5) | 349440 | 53760 | 3.8729835 | ||||||||
| 10 | =  |  steriruncic 8-cube h3,4{4,3,3,3,3,3,3}  |  (1,1,1,3,5,5,5,5) | 179200 | 35840 | 3.7416575 | ||||||||
| 11 | =  |  penticantic 8-cube h2,5{4,3,3,3,3,3,3}  |  (1,1,3,3,3,5,5,5) | 573440 | 71680 | 3.6055512 | ||||||||
| 12 | =  |  pentiruncic 8-cube h3,5{4,3,3,3,3,3,3}  |  (1,1,1,3,3,5,5,5) | 537600 | 71680 | 3.4641016 | ||||||||
| 13 | =  |  pentisteric 8-cube h4,5{4,3,3,3,3,3,3}  |  (1,1,1,1,3,5,5,5) | 232960 | 35840 | 3.3166249 | ||||||||
| 14 | =  |  hexicantic 8-cube h2,6{4,3,3,3,3,3,3}  |  (1,1,3,3,3,3,5,5) | 456960 | 53760 | 3.3166249 | ||||||||
| 15 | =  |  hexicruncic 8-cube h3,6{4,3,3,3,3,3,3}  |  (1,1,1,3,3,3,5,5) | 645120 | 71680 | 3.1622777 | ||||||||
| 16 | =  |  hexisteric 8-cube h4,6{4,3,3,3,3,3,3}  |  (1,1,1,1,3,3,5,5) | 483840 | 53760 | 3 | ||||||||
| 17 | =  |  hexipentic 8-cube h5,6{4,3,3,3,3,3,3}  |  (1,1,1,1,1,3,5,5) | 182784 | 21504 | 2.8284271 | ||||||||
| 18 | =  |  hepticantic 8-cube h2,7{4,3,3,3,3,3,3}  |  (1,1,3,3,3,3,3,5) | 172032 | 21504 | 3 | ||||||||
| 19 | =  |  heptiruncic 8-cube h3,7{4,3,3,3,3,3,3}  |  (1,1,1,3,3,3,3,5) | 340480 | 35840 | 2.8284271 | ||||||||
| 20 | =  |  heptsteric 8-cube h4,7{4,3,3,3,3,3,3}  |  (1,1,1,1,3,3,3,5) | 376320 | 35840 | 2.6457512 | ||||||||
| 21 | =  |  heptipentic 8-cube h5,7{4,3,3,3,3,3,3}  |  (1,1,1,1,1,3,3,5) | 236544 | 21504 | 2.4494898 | ||||||||
| 22 | =  |  heptihexic 8-cube h6,7{4,3,3,3,3,3,3}  |  (1,1,1,1,1,1,3,5) | 78848 | 7168 | 2.236068 | ||||||||
| 23 | =  |  steriruncicantic 8-cube h2,3,4{4,36}  |  (1,1,3,5,7,7,7,7) | 430080 | 107520 | 5.3851647 | ||||||||
| 24 | =  |  pentiruncicantic 8-cube h2,3,5{4,36}  |  (1,1,3,5,5,7,7,7) | 1182720 | 215040 | 5.0990195 | ||||||||
| 25 | =  |  pentistericantic 8-cube h2,4,5{4,36}  |  (1,1,3,3,5,7,7,7) | 1075200 | 215040 | 4.8989797 | ||||||||
| 26 | =  |  pentisterirunic 8-cube h3,4,5{4,36}  |  (1,1,1,3,5,7,7,7) | 716800 | 143360 | 4.7958317 | ||||||||
| 27 | =  |  hexiruncicantic 8-cube h2,3,6{4,36}  |  (1,1,3,5,5,5,7,7) | 1290240 | 215040 | 4.7958317 | ||||||||
| 28 | =  |  hexistericantic 8-cube h2,4,6{4,36}  |  (1,1,3,3,5,5,7,7) | 2096640 | 322560 | 4.5825758 | ||||||||
| 29 | =  |  hexisterirunic 8-cube h3,4,6{4,36}  |  (1,1,1,3,5,5,7,7) | 1290240 | 215040 | 4.472136 | ||||||||
| 30 | =  |  hexipenticantic 8-cube h2,5,6{4,36}  |  (1,1,3,3,3,5,7,7) | 1290240 | 215040 | 4.3588991 | ||||||||
| 31 | =  |  hexipentirunic 8-cube h3,5,6{4,36}  |  (1,1,1,3,3,5,7,7) | 1397760 | 215040 | 4.2426405 | ||||||||
| 32 | =  |  hexipentisteric 8-cube h4,5,6{4,36}  |  (1,1,1,1,3,5,7,7) | 698880 | 107520 | 4.1231055 | ||||||||
| 33 | =  |  heptiruncicantic 8-cube h2,3,7{4,36}  |  (1,1,3,5,5,5,5,7) | 591360 | 107520 | 4.472136 | ||||||||
| 34 | =  |  heptistericantic 8-cube h2,4,7{4,36}  |  (1,1,3,3,5,5,5,7) | 1505280 | 215040 | 4.2426405 | ||||||||
| 35 | =  |  heptisterruncic 8-cube h3,4,7{4,36}  |  (1,1,1,3,5,5,5,7) | 860160 | 143360 | 4.1231055 | ||||||||
| 36 | =  |  heptipenticantic 8-cube h2,5,7{4,36}  |  (1,1,3,3,3,5,5,7) | 1612800 | 215040 | 4 | ||||||||
| 37 | =  |  heptipentiruncic 8-cube h3,5,7{4,36}  |  (1,1,1,3,3,5,5,7) | 1612800 | 215040 | 3.8729835 | ||||||||
| 38 | =  |  heptipentisteric 8-cube h4,5,7{4,36}  |  (1,1,1,1,3,5,5,7) | 752640 | 107520 | 3.7416575 | ||||||||
| 39 | =  |  heptihexicantic 8-cube h2,6,7{4,36}  |  (1,1,3,3,3,3,5,7) | 752640 | 107520 | 3.7416575 | ||||||||
| 40 | =  |  heptihexiruncic 8-cube h3,6,7{4,36}  |  (1,1,1,3,3,3,5,7) | 1146880 | 143360 | 3.6055512 | ||||||||
| 41 | =  |  heptihexisteric 8-cube h4,6,7{4,36}  |  (1,1,1,1,3,3,5,7) | 913920 | 107520 | 3.4641016 | ||||||||
| 42 | =  |  heptihexipentic 8-cube h5,6,7{4,36}  |  (1,1,1,1,1,3,5,7) | 365568 | 43008 | 3.3166249 | ||||||||
| 43 | =  |  pentisteriruncicantic 8-cube h2,3,4,5{4,36}  |  (1,1,3,5,7,9,9,9) | 1720320 | 430080 | 6.4031243 | ||||||||
| 44 | =  |  hexisteriruncicantic 8-cube h2,3,4,6{4,36}  |  (1,1,3,5,7,7,9,9) | 3225600 | 645120 | 6.0827627 | ||||||||
| 45 | =  |  hexipentiruncicantic 8-cube h2,3,5,6{4,36}  |  (1,1,3,5,5,7,9,9) | 2903040 | 645120 | 5.8309517 | ||||||||
| 46 | =  |  hexipentistericantic 8-cube h2,4,5,6{4,36}  |  (1,1,3,3,5,7,9,9) | 3225600 | 645120 | 5.6568542 | ||||||||
| 47 | =  |  hexipentisteriruncic 8-cube h3,4,5,6{4,36}  |  (1,1,1,3,5,7,9,9) | 2150400 | 430080 | 5.5677648 | ||||||||
| 48 | =  |  heptsteriruncicantic 8-cube h2,3,4,7{4,36}  |  (1,1,3,5,7,7,7,9) | 2150400 | 430080 | 5.7445626 | ||||||||
| 49 | =  |  heptipentiruncicantic 8-cube h2,3,5,7{4,36}  |  (1,1,3,5,5,7,7,9) | 3548160 | 645120 | 5.4772258 | ||||||||
| 50 | =  |  heptipentistericantic 8-cube h2,4,5,7{4,36}  |  (1,1,3,3,5,7,7,9) | 3548160 | 645120 | 5.291503 | ||||||||
| 51 | =  |  heptipentisteriruncic 8-cube h3,4,5,7{4,36}  |  (1,1,1,3,5,7,7,9) | 2365440 | 430080 | 5.1961527 | ||||||||
| 52 | =  |  heptihexiruncicantic 8-cube h2,3,6,7{4,36}  |  (1,1,3,5,5,5,7,9) | 2150400 | 430080 | 5.1961527 | ||||||||
| 53 | =  |  heptihexistericantic 8-cube h2,4,6,7{4,36}  |  (1,1,3,3,5,5,7,9) | 3870720 | 645120 | 5 | ||||||||
| 54 | =  |  heptihexisteriruncic 8-cube h3,4,6,7{4,36}  |  (1,1,1,3,5,5,7,9) | 2365440 | 430080 | 4.8989797 | ||||||||
| 55 | =  |  heptihexipenticantic 8-cube h2,5,6,7{4,36}  |  (1,1,3,3,3,5,7,9) | 2580480 | 430080 | 4.7958317 | ||||||||
| 56 | =  |  heptihexipentiruncic 8-cube h3,5,6,7{4,36}  |  (1,1,1,3,3,5,7,9) | 2795520 | 430080 | 4.6904159 | ||||||||
| 57 | =  |  heptihexipentisteric 8-cube h4,5,6,7{4,36}  |  (1,1,1,1,3,5,7,9) | 1397760 | 215040 | 4.5825758 | ||||||||
| 58 | =  |  hexipentisteriruncicantic 8-cube h2,3,4,5,6{4,36}  |  (1,1,3,5,7,9,11,11) | 5160960 | 1290240 | 7.1414285 | ||||||||
| 59 | =  |  heptipentisteriruncicantic 8-cube h2,3,4,5,7{4,36}  |  (1,1,3,5,7,9,9,11) | 5806080 | 1290240 | 6.78233 | ||||||||
| 60 | =  |  heptihexisteriruncicantic 8-cube h2,3,4,6,7{4,36}  |  (1,1,3,5,7,7,9,11) | 5806080 | 1290240 | 6.480741 | ||||||||
| 61 | =  |  heptihexipentiruncicantic 8-cube h2,3,5,6,7{4,36}  |  (1,1,3,5,5,7,9,11) | 5806080 | 1290240 | 6.244998 | ||||||||
| 62 | =  |  heptihexipentistericantic 8-cube h2,4,5,6,7{4,36}  |  (1,1,3,3,5,7,9,11) | 6451200 | 1290240 | 6.0827627 | ||||||||
| 63 | =  |  heptihexipentisteriruncic 8-cube h3,4,5,6,7{4,36}  |  (1,1,1,3,5,7,9,11) | 4300800 | 860160 | 6.0000000 | ||||||||
| 64 | =  |  heptihexipentisteriruncicantic 8-cube h2,3,4,5,6,7{4,36}  |  (1,1,3,5,7,9,11,13) | 2580480 | 10321920 | 7.5498347 | ||||||||
The E8 family
The E8 family has symmetry order 696,729,600.
There are 255 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. Eight forms are shown below, 4 single-ringed, 3 truncations (2 rings), and the final omnitruncation are given below. Bowers-style acronym names are given for cross-referencing.
See also list of E8 polytopes for Coxeter plane graphs of this family.
| E8 uniform polytopes | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| # | Coxeter-Dynkin diagram |  Names | Element counts | |||||||||||
| 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | Vertices | |||||||
| 1 | 421 (fy) | 19440 | 207360 | 483840 | 483840 | 241920 | 60480 | 6720 | 240 | |||||
| 2 | Truncated 421 (tiffy) | 188160 | 13440 | |||||||||||
| 3 | Rectified 421 (riffy) | 19680 | 375840 | 1935360 | 3386880 | 2661120 | 1028160 | 181440 | 6720 | |||||
| 4 | Birectified 421 (borfy) | 19680 | 382560 | 2600640 | 7741440 | 9918720 | 5806080 | 1451520 | 60480 | |||||
| 5 | Trirectified 421 (torfy) | 19680 | 382560 | 2661120 | 9313920 | 16934400 | 14515200 | 4838400 | 241920 | |||||
| 6 | Rectified 142 (buffy) | 19680 | 382560 | 2661120 | 9072000 | 16934400 | 16934400 | 7257600 | 483840 | |||||
| 7 | Rectified 241 (robay) | 19680 | 313440 | 1693440 | 4717440 | 7257600 | 5322240 | 1451520 | 69120 | |||||
| 8 | 241 (bay) | 17520 | 144960 | 544320 | 1209600 | 1209600 | 483840 | 69120 | 2160 | |||||
| 9 | Truncated 241 | 138240 | ||||||||||||
| 10 | 142 (bif) | 2400 | 106080 | 725760 | 2298240 | 3628800 | 2419200 | 483840 | 17280 | |||||
| 11 | Truncated 142 | 967680 | ||||||||||||
| 12 | Omnitruncated 421 | 696729600 | ||||||||||||
Regular and uniform honeycombs

There are five fundamental affine Coxeter groups that generate regular and uniform tessellations in 7-space:
| # | Coxeter group | Coxeter diagram | Forms | |
|---|---|---|---|---|
| 1 | [3[8]] | 29 | ||
| 2 | [4,35,4] | 135 | ||
| 3 | [4,34,31,1] | 191 (64 new) | ||
| 4 | [31,1,33,31,1] | 77 (10 new) | ||
| 5 | [33,3,1] | 143 | ||
Regular and uniform tessellations include:
-  29 uniquely ringed forms, including: 
- 7-simplex honeycomb: {3[8]} 









 
 - 7-simplex honeycomb: {3[8]} 
 -  135 uniquely ringed forms, including: 
- Regular 7-cube honeycomb: {4,34,4} = {4,34,31,1}, 












 = 














 
 - Regular 7-cube honeycomb: {4,34,4} = {4,34,31,1}, 
 -  191 uniquely ringed forms, 127 shared with , and 64 new, including: 
- 7-demicube honeycomb: h{4,34,4} = {31,1,34,4}, 












 = 












 
 - 7-demicube honeycomb: h{4,34,4} = {31,1,34,4}, 
 - , [31,1,33,31,1]: 77 unique ring permutations, and 10 are new, the first Coxeter called a quarter 7-cubic honeycomb. 










, 









, 









, 









, 









, 









, 









, 









, 









, 










 -  143 uniquely ringed forms, including: 
- 133 honeycomb: {3,33,3}, 









 - 331 honeycomb: {3,3,3,33,1}, 









 
 - 133 honeycomb: {3,33,3}, 
 
Regular and uniform hyperbolic honeycombs
There are no compact hyperbolic Coxeter groups of rank 8, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However, there are 4 paracompact hyperbolic Coxeter groups of rank 8, each generating uniform honeycombs in 7-space as permutations of rings of the Coxeter diagrams.
|  = [3,3[7]]: |   = [31,1,32,32,1]: |   = [4,33,32,1]: |   = [33,2,2]: | 
References
- T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
 - A. Boole Stott (1910). "Geometrical deduction of semiregular from regular polytopes and space fillings" (PDF). Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam. XI (1). Amsterdam: Johannes Müller. Archived from the original (PDF) on 29 April 2025.
 - H.S.M. Coxeter: 
- H.S.M. Coxeter, M.S. Longuet-Higgins und J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
 - H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
 - Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, wiley.com, ISBN 978-0-471-01003-6 
- (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
 - (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
 - (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
 
 
 - N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
 - Klitzing, Richard. "8D uniform polytopes (polyzetta) with acronyms".
 

































