In differential geometry, the Bergman metric is a Hermitian metric that can be defined on certain types of complex manifold. It is so called because it is derived from the Bergman kernel, both of which are named after Stefan Bergman. 
 Definition
 Let 
 be a domain and let 
 be the Bergman kernel on G. We define a Hermitian metric on the tangent bundle 
 by 
 
 for 
. Then the length of a tangent vector 
 is given by 
 
 This metric is called the Bergman metric on G. 
The length of a (piecewise) C1 curve 
 is then computed as 
 
 The distance 
 of two points 
 is then defined as 
 
 The distance dG is called the Bergman distance. 
The Bergman metric is in fact a positive definite matrix at each point if G is a bounded domain. More importantly, the distance dG is invariant under biholomorphic mappings of G to another domain 
. That is if f is a biholomorphism of G and 
, then 
. 
 References
 - Steven G. Krantz. Function Theory of Several Complex Variables, AMS Chelsea Publishing, Providence, Rhode Island, 1992.
 
 This article incorporates material from Bergman metric on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.