Plot of the Anger function J v(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D   In mathematics , the Anger function , introduced by C. T. Anger  (1855 ), is a function defined as 
                                                 J                                     ν                                (          z          )          =                                  1              π                                           ∫                         0                                     π                                cos                    (          ν          θ          −          z          sin                    θ          )                    d          θ                    {\displaystyle \mathbf {J} _{\nu }(z)={\frac {1}{\pi }}\int _{0}^{\pi }\cos(\nu \theta -z\sin \theta )\,d\theta }         with complex parameter                         ν                    {\displaystyle \nu }         and complex variable                                                 z                                          {\displaystyle {\textit {z}}}        .[ 1]   It is closely related to the Bessel functions . 
The Weber function  (also known as Lommel –Weber function ), introduced by H. F. Weber  (1879 ), is a closely related function defined by  
                                                 E                                     ν                                (          z          )          =                                  1              π                                           ∫                         0                                     π                                sin                    (          ν          θ          −          z          sin                    θ          )                    d          θ                    {\displaystyle \mathbf {E} _{\nu }(z)={\frac {1}{\pi }}\int _{0}^{\pi }\sin(\nu \theta -z\sin \theta )\,d\theta }         and is closely related to Bessel functions  of the second kind. 
   
Relation between Weber and Anger functions  The Anger and Weber functions are related by 
 Plot of the Weber function E v(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D                                                                                 sin                                    (                  π                  ν                  )                                                          J                                                             ν                                                        (                  z                  )                                                                   =                  cos                                    (                  π                  ν                  )                                                          E                                                             ν                                                        (                  z                  )                  −                                                          E                                                             −                      ν                                                        (                  z                  )                  ,                                                                            −                  sin                                    (                  π                  ν                  )                                                          E                                                             ν                                                        (                  z                  )                                                                   =                  cos                                    (                  π                  ν                  )                                                          J                                                             ν                                                        (                  z                  )                  −                                                          J                                                             −                      ν                                                        (                  z                  )                  ,                                                                        {\displaystyle {\begin{aligned}\sin(\pi \nu )\mathbf {J} _{\nu }(z)&=\cos(\pi \nu )\mathbf {E} _{\nu }(z)-\mathbf {E} _{-\nu }(z),\\-\sin(\pi \nu )\mathbf {E} _{\nu }(z)&=\cos(\pi \nu )\mathbf {J} _{\nu }(z)-\mathbf {J} _{-\nu }(z),\end{aligned}}}         so in particular if ν is not an integer  they can be expressed as linear combinations of each other.  If ν is an integer then Anger functions J ν  are the same as Bessel functions J ν , and Weber functions can be expressed as finite linear combinations of Struve functions . 
 
Power series expansion  The Anger function has the power series  expansion[ 2]   
                                                 J                                     ν                                (          z          )          =          cos                                                           π                ν                            2                                           ∑                         k              =              0                                     ∞                                                                       (                −                1                                 )                                     k                                                                   z                                     2                    k                                                                                              4                                     k                                                  Γ                                 (                                     k                    +                                                                ν                        2                                                              +                    1                                    )                                Γ                                 (                                     k                    −                                                                ν                        2                                                              +                    1                                    )                                                              +          sin                                                           π                ν                            2                                           ∑                         k              =              0                                     ∞                                                                       (                −                1                                 )                                     k                                                                   z                                     2                    k                    +                    1                                                                                              2                                     2                    k                    +                    1                                                  Γ                                 (                                     k                    +                                                                ν                        2                                                              +                                                                3                        2                                                                              )                                Γ                                 (                                     k                    −                                                                ν                        2                                                              +                                                                3                        2                                                                              )                                                              .                    {\displaystyle \mathbf {J} _{\nu }(z)=\cos {\frac {\pi \nu }{2}}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{4^{k}\Gamma \left(k+{\frac {\nu }{2}}+1\right)\Gamma \left(k-{\frac {\nu }{2}}+1\right)}}+\sin {\frac {\pi \nu }{2}}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{2^{2k+1}\Gamma \left(k+{\frac {\nu }{2}}+{\frac {3}{2}}\right)\Gamma \left(k-{\frac {\nu }{2}}+{\frac {3}{2}}\right)}}.}         While the Weber function has the power series expansion[ 2]   
                                                 E                                     ν                                (          z          )          =          sin                                                           π                ν                            2                                           ∑                         k              =              0                                     ∞                                                                       (                −                1                                 )                                     k                                                                   z                                     2                    k                                                                                              4                                     k                                                  Γ                                 (                                     k                    +                                                                ν                        2                                                              +                    1                                    )                                Γ                                 (                                     k                    −                                                                ν                        2                                                              +                    1                                    )                                                              −          cos                                                           π                ν                            2                                           ∑                         k              =              0                                     ∞                                                                       (                −                1                                 )                                     k                                                                   z                                     2                    k                    +                    1                                                                                              2                                     2                    k                    +                    1                                                  Γ                                 (                                     k                    +                                                                ν                        2                                                              +                                                                3                        2                                                                              )                                Γ                                 (                                     k                    −                                                                ν                        2                                                              +                                                                3                        2                                                                              )                                                              .                    {\displaystyle \mathbf {E} _{\nu }(z)=\sin {\frac {\pi \nu }{2}}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{4^{k}\Gamma \left(k+{\frac {\nu }{2}}+1\right)\Gamma \left(k-{\frac {\nu }{2}}+1\right)}}-\cos {\frac {\pi \nu }{2}}\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{2^{2k+1}\Gamma \left(k+{\frac {\nu }{2}}+{\frac {3}{2}}\right)\Gamma \left(k-{\frac {\nu }{2}}+{\frac {3}{2}}\right)}}.}         
Differential equations  The Anger and Weber functions are solutions of inhomogeneous forms of Bessel's equation  
                                    z                         2                                           y                         ′              ′                                +          z                     y                         ′                                +          (                     z                         2                                −                     ν                         2                                )          y          =          0.                    {\displaystyle z^{2}y^{\prime \prime }+zy^{\prime }+(z^{2}-\nu ^{2})y=0.}         More precisely, the Anger functions satisfy the equation[ 2]   
                                    z                         2                                           y                         ′              ′                                +          z                     y                         ′                                +          (                     z                         2                                −                     ν                         2                                )          y          =                                                 (                z                −                ν                )                sin                                (                π                ν                )                            π                                ,                    {\displaystyle z^{2}y^{\prime \prime }+zy^{\prime }+(z^{2}-\nu ^{2})y={\frac {(z-\nu )\sin(\pi \nu )}{\pi }},}         and the Weber functions satisfy the equation[ 2]   
                                    z                         2                                           y                         ′              ′                                +          z                     y                         ′                                +          (                     z                         2                                −                     ν                         2                                )          y          =          −                                                 z                +                ν                +                (                z                −                ν                )                cos                                (                π                ν                )                            π                                .                    {\displaystyle z^{2}y^{\prime \prime }+zy^{\prime }+(z^{2}-\nu ^{2})y=-{\frac {z+\nu +(z-\nu )\cos(\pi \nu )}{\pi }}.}         
Recurrence relations  The Anger function satisfies this inhomogeneous form of recurrence relation [ 2]   
                         z                                  J                                     ν              −              1                                (          z          )          +          z                                  J                                     ν              +              1                                (          z          )          =          2          ν                                  J                                     ν                                (          z          )          −                                                 2                sin                                π                ν                            π                                .                    {\displaystyle z\mathbf {J} _{\nu -1}(z)+z\mathbf {J} _{\nu +1}(z)=2\nu \mathbf {J} _{\nu }(z)-{\frac {2\sin \pi \nu }{\pi }}.}         While the Weber function satisfies this inhomogeneous form of recurrence relation [ 2]   
                         z                                  E                                     ν              −              1                                (          z          )          +          z                                  E                                     ν              +              1                                (          z          )          =          2          ν                                  E                                     ν                                (          z          )          −                                                 2                (                1                −                cos                                π                ν                )                            π                                .                    {\displaystyle z\mathbf {E} _{\nu -1}(z)+z\mathbf {E} _{\nu +1}(z)=2\nu \mathbf {E} _{\nu }(z)-{\frac {2(1-\cos \pi \nu )}{\pi }}.}         
Delay differential equations  The Anger and Weber functions satisfy these homogeneous forms of delay differential equations [ 2]   
                                                 J                                     ν              −              1                                (          z          )          −                                  J                                     ν              +              1                                (          z          )          =          2                                                 ∂                                 ∂                  z                                                                                      J                                     ν                                (          z          )          ,                    {\displaystyle \mathbf {J} _{\nu -1}(z)-\mathbf {J} _{\nu +1}(z)=2{\dfrac {\partial }{\partial z}}\mathbf {J} _{\nu }(z),}                                                         E                                     ν              −              1                                (          z          )          −                                  E                                     ν              +              1                                (          z          )          =          2                                                 ∂                                 ∂                  z                                                                                      E                                     ν                                (          z          )          .                    {\displaystyle \mathbf {E} _{\nu -1}(z)-\mathbf {E} _{\nu +1}(z)=2{\dfrac {\partial }{\partial z}}\mathbf {E} _{\nu }(z).}         The Anger and Weber functions also satisfy these inhomogeneous forms of delay differential equations [ 2]   
                         z                                                 ∂                                 ∂                  z                                                                                      J                                     ν                                (          z          )          ±          ν                                  J                                     ν                                (          z          )          =          ±          z                                  J                                     ν              ∓              1                                (          z          )          ±                                                 sin                                π                ν                            π                                ,                    {\displaystyle z{\dfrac {\partial }{\partial z}}\mathbf {J} _{\nu }(z)\pm \nu \mathbf {J} _{\nu }(z)=\pm z\mathbf {J} _{\nu \mp 1}(z)\pm {\frac {\sin \pi \nu }{\pi }},}                                 z                                                 ∂                                 ∂                  z                                                                                      E                                     ν                                (          z          )          ±          ν                                  E                                     ν                                (          z          )          =          ±          z                                  E                                     ν              ∓              1                                (          z          )          ±                                                 1                −                cos                                π                ν                            π                                .                    {\displaystyle z{\dfrac {\partial }{\partial z}}\mathbf {E} _{\nu }(z)\pm \nu \mathbf {E} _{\nu }(z)=\pm z\mathbf {E} _{\nu \mp 1}(z)\pm {\frac {1-\cos \pi \nu }{\pi }}.}         
References    ^   Prudnikov, A.P.  (2001) [1994], "Anger function" , Encyclopedia of Mathematics  , EMS Press     ^ a   b   c   d   e   f   g   h   Paris, R. B. (2010), "Anger-Weber Functions" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions  , Cambridge University Press, ISBN  978-0-521-19225-5 , MR  2723248   .        Abramowitz, Milton ; Stegun, Irene Ann , eds. (1983) [June 1964]. "Chapter 12" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables  . Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 498. ISBN  978-0-486-61272-0 . LCCN  64-60036 . MR  0167642 . LCCN  65-12253 .  C.T. Anger, Neueste Schr. d. Naturf. d. Ges. i. Danzig, 5  (1855)  pp. 1–29  Prudnikov, A.P. (2001) [1994], "Weber function" , Encyclopedia of Mathematics  , EMS Press    G.N. Watson , "A treatise on the theory of Bessel functions", 1–2, Cambridge Univ. Press  (1952)  H.F. Weber, Zurich Vierteljahresschrift, 24  (1879)  pp. 33–76