In mathematics , a planar lamina (or plane lamina [ 1] ) is a figure representing a thin, usually uniform, flat layer of the solid. It serves also as an idealized model of a planar cross section of a solid body in integration .
Planar laminas can be used to determine moments of inertia , or center of mass of flat figures, as well as an aid in corresponding calculations for 3D bodies.
Definition A planar lamina is defined as a figure (a closed set ) D of a finite area in a plane, with some mass m .[ 2]
This is useful in calculating moments of inertia or center of mass for a constant density, because the mass of a lamina is proportional to its area. In a case of a variable density, given by some (non-negative) surface density function ρ ( x , y ) , {\displaystyle \rho (x,y),} the mass m {\displaystyle m} of the planar lamina D is a planar integral of ρ over the figure:[ 3]
m = ∬ D ρ ( x , y ) d x d y {\displaystyle m=\iint _{D}\rho (x,y)\,dx\,dy}
Properties The center of mass of the lamina is at the point
( M y m , M x m ) {\displaystyle \left({\frac {M_{y}}{m}},{\frac {M_{x}}{m}}\right)}
where M y {\displaystyle M_{y}} is the moment of the entire lamina about the y-axis and M x {\displaystyle M_{x}} is the moment of the entire lamina about the x-axis:
M y = lim m , n → ∞ ∑ i = 1 m ∑ j = 1 n x i j ∗ ρ ( x i j ∗ , y i j ∗ ) Δ D = ∬ D x ρ ( x , y ) d x d y M x = lim m , n → ∞ ∑ i = 1 m ∑ j = 1 n y i j ∗ ρ ( x i j ∗ , y i j ∗ ) Δ D = ∬ D y ρ ( x , y ) d x d y {\displaystyle {\begin{aligned}M_{y}&=\lim _{m,n\to \infty }\,\sum _{i=1}^{m}\sum _{j=1}^{n}x_{ij}^{*}\,\rho (x_{ij}^{*},y_{ij}^{*})\,\Delta D=\iint _{D}x\,\rho (x,y)\,dx\,dy\\[1ex]M_{x}&=\lim _{m,n\to \infty }\,\sum _{i=1}^{m}\sum _{j=1}^{n}y_{ij}^{*}\,\rho (x_{ij}^{*},y_{ij}^{*})\,\Delta D=\iint _{D}y\,\rho (x,y)\,dx\,dy\end{aligned}}}
with summation and integration taken over a planar domain D {\displaystyle D} .
Example Find the center of mass of a lamina with edges given by the lines x = 0 , {\displaystyle x=0,} y = x {\displaystyle y=x} and y = 4 − x {\displaystyle y=4-x} where the density is given as ρ ( x , y ) = 2 x + 3 y + 2 {\displaystyle \rho (x,y)=2x+3y+2} .
For this the mass m {\displaystyle m} must be found as well as the moments M y {\displaystyle M_{y}} and M x {\displaystyle M_{x}} .
Mass is m = ∬ D ρ ( x , y ) d x d y {\textstyle m=\iint _{D}\rho (x,y)\,dx\,dy} which can be equivalently expressed as an iterated integral :
m = ∫ x = 0 2 ∫ y = x 4 − x ( 2 x + 3 y + 2 ) d y d x {\displaystyle m=\int _{x=0}^{2}\int _{y=x}^{4-x}\left(2x+3y+2\right)dy\,dx}
The inner integral is:
∫ y = x 4 − x ( 2 x + 3 y + 2 ) d y = [ 2 x y + 3 2 y 2 + 2 y ] y = x y = 4 − x = [ 2 x ( 4 − x ) + 3 2 ( 4 − x ) 2 + 2 ( 4 − x ) ] − [ 2 x 2 + 3 2 x 2 + 2 x ] = − 4 x 2 − 8 x + 32 {\displaystyle {\begin{aligned}&\int _{y=x}^{4-x}\,(2x+3y+2)\,dy\\[1ex]&=\left[2xy+{\frac {3}{2}}y^{2}+2y\right]_{y=x}^{y=4-x}\\[1ex]&=\left[2x\left(4-x\right)+{\frac {3}{2}}\left(4-x\right)^{2}+2\left(4-x\right)\right]-\left[2x^{2}+{\frac {3}{2}}x^{2}+2x\right]\\[1ex]&=-4x^{2}-8x+32\end{aligned}}}
Plugging this into the outer integral results in:
m = ∫ 0 2 ( − 4 x 2 − 8 x + 32 ) d x = [ − 4 3 x 3 − 4 x 2 + 32 x ] 0 2 = 112 3 {\displaystyle {\begin{aligned}m&=\int _{0}^{2}\left(-4x^{2}-8x+32\right)dx\\[1ex]&=\left[-{\frac {4}{3}}x^{3}-4x^{2}+32x\right]_{0}^{2}={\frac {112}{3}}\end{aligned}}}
Similarly are calculated both moments:
M y = ∬ D x ρ ( x , y ) d x d y = ∫ x = 0 2 ∫ y = x 4 − x x ( 2 x + 3 y + 2 ) d y d x {\displaystyle {\begin{aligned}M_{y}&=\iint _{D}x\,\rho (x,y)\,dx\,dy\\[1ex]&=\int _{x=0}^{2}\int _{y=x}^{4-x}x\left(2x+3y+2\right)dy\,dx\end{aligned}}}
with the inner integral:
∫ y = x 4 − x x ( 2 x + 3 y + 2 ) d y = [ 2 x 2 y + 3 x 2 y 2 + 2 x y ] y = x 4 − x = − 4 x 3 − 8 x 2 + 32 x {\displaystyle {\begin{aligned}\int _{y=x}^{4-x}x\left(2x+3y+2\right)dy&=\left[2x^{2}y+{\frac {3x}{2}}y^{2}+2xy\right]_{y=x}^{4-x}\\[1ex]&=-4x^{3}-8x^{2}+32x\end{aligned}}}
which makes:
M y = ∫ 0 2 ( − 4 x 3 − 8 x 2 + 32 x ) d x = [ − x 4 − 8 3 x 3 + 16 x 2 ] 0 2 = 80 3 {\displaystyle {\begin{aligned}M_{y}&=\int _{0}^{2}\left(-4x^{3}-8x^{2}+32x\right)dx\\[1ex]&=\left[-x^{4}-{\frac {8}{3}}x^{3}+16x^{2}\right]_{0}^{2}={\frac {80}{3}}\end{aligned}}}
and
M x = ∬ D y ρ ( x , y ) d x d y = ∫ x = 0 2 ∫ y = x 4 − x y ( 2 x + 3 y + 2 ) d y d x = ∫ 0 2 [ x y 2 + y 3 + y 2 ] y = x 4 − x d x = ∫ 0 2 ( − 2 x 3 + 4 x 2 − 40 x + 80 ) d x = [ − x 4 2 + 4 x 3 3 − 20 x 2 + 80 x ] 0 2 = 248 3 {\displaystyle {\begin{aligned}M_{x}&=\iint _{D}y\,\rho (x,y)\,dx\,dy\\[1ex]&=\int _{x=0}^{2}\int _{y=x}^{4-x}y\left(2x+3y+2\right)dy\,dx\\[1ex]&=\int _{0}^{2}\left[xy^{2}+y^{3}+y^{2}\right]_{y=x}^{4-x}\,dx\\[1ex]&=\int _{0}^{2}\left(-2x^{3}+4x^{2}-40x+80\right)dx\\[1ex]&=\left[-{\frac {x^{4}}{2}}+{\frac {4x^{3}}{3}}-20x^{2}+80x\right]_{0}^{2}={\frac {248}{3}}\end{aligned}}}
Finally, the center of mass is
( M y m , M x m ) = ( 80 3 112 3 , 248 3 112 3 ) = ( 5 7 , 31 14 ) {\displaystyle \left({\frac {M_{y}}{m}},{\frac {M_{x}}{m}}\right)=\left({\frac {\frac {80}{3}}{\frac {112}{3}}},{\frac {\frac {248}{3}}{\frac {112}{3}}}\right)=\left({\frac {5}{7}},{\frac {31}{14}}\right)}
References ^ Atkins, Tony; Escudier, Marcel (2013), "Plane lamina" , A Dictionary of Mechanical Engineering (1 ed.) , Oxford University Press , doi :10.1093/acref/9780199587438.001.0001 , ISBN 9780199587438 , retrieved 2021-06-08 ^ "Planar Laminae" , WolframAlpha , retrieved 2021-03-09 ^ "Lamina" . MathWorld . Retrieved 2021-03-09 .