Hexicated 8-simplexes
Hexicated 8-simplex | |
---|---|
![]() Orthogonal projection on A8 Coxeter plane | |
Type | uniform 8-polytope |
Schläfli symbol | t0,6{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 2268 |
Vertices | 252 |
Vertex figure | |
Coxeter groups | A8, [37], order 362880 |
Properties | convex |
In eight-dimensional geometry, a hexicated 8-simplex is a uniform 8-polytope, being a hexication (6th order truncation) of the regular 8-simplex. Acronym: supane (Jonathan Bowers)[1]
Coordinates
The Cartesian coordinates of the vertices of the hexicated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,1,1,1,1,1,2). This construction is based on facets of the hexicated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Related polytopes
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
A8 polytopes | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() t0 | ![]() t1 | ![]() t2 | ![]() t3 | ![]() t01 | ![]() t02 | ![]() t12 | ![]() t03 | ![]() t13 | ![]() t23 | ![]() t04 | ![]() t14 | ![]() t24 | ![]() t34 | ![]() t05 |
![]() t15 | ![]() t25 | ![]() t06 | ![]() t16 | ![]() t07 | ![]() t012 | ![]() t013 | ![]() t023 | ![]() t123 | ![]() t014 | ![]() t024 | ![]() t124 | ![]() t034 | ![]() t134 | ![]() t234 |
![]() t015 | ![]() t025 | ![]() t125 | ![]() t035 | ![]() t135 | ![]() t235 | ![]() t045 | ![]() t145 | ![]() t016 | ![]() t026 | ![]() t126 | ![]() t036 | ![]() t136 | ![]() t046 | ![]() t056 |
![]() t017 | ![]() t027 | ![]() t037 | ![]() t0123 | ![]() t0124 | ![]() t0134 | ![]() t0234 | ![]() t1234 | ![]() t0125 | ![]() t0135 | ![]() t0235 | ![]() t1235 | ![]() t0145 | ![]() t0245 | ![]() t1245 |
![]() t0345 | ![]() t1345 | ![]() t2345 | ![]() t0126 | ![]() t0136 | ![]() t0236 | ![]() t1236 | ![]() t0146 | ![]() t0246 | ![]() t1246 | ![]() t0346 | ![]() t1346 | ![]() t0156 | ![]() t0256 | ![]() t1256 |
![]() t0356 | ![]() t0456 | ![]() t0127 | ![]() t0137 | ![]() t0237 | ![]() t0147 | ![]() t0247 | ![]() t0347 | ![]() t0157 | ![]() t0257 | ![]() t0167 | ![]() t01234 | ![]() t01235 | ![]() t01245 | ![]() t01345 |
![]() t02345 | ![]() t12345 | ![]() t01236 | ![]() t01246 | ![]() t01346 | ![]() t02346 | ![]() t12346 | ![]() t01256 | ![]() t01356 | ![]() t02356 | ![]() t12356 | ![]() t01456 | ![]() t02456 | ![]() t03456 | ![]() t01237 |
![]() t01247 | ![]() t01347 | ![]() t02347 | ![]() t01257 | ![]() t01357 | ![]() t02357 | ![]() t01457 | ![]() t01267 | ![]() t01367 | ![]() t012345 | ![]() t012346 | ![]() t012356 | ![]() t012456 | ![]() t013456 | ![]() t023456 |
![]() t123456 | ![]() t012347 | ![]() t012357 | ![]() t012457 | ![]() t013457 | ![]() t023457 | ![]() t012367 | ![]() t012467 | ![]() t013467 | ![]() t012567 | ![]() t0123456 | ![]() t0123457 | ![]() t0123467 | ![]() t0123567 | ![]() t01234567 |
Notes
- ^ Klitzing, (x3o3o3o3o3o3x3o - supane)
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, wiley.com, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, PhD
- Klitzing, Richard. "8D uniform polytopes (polyzetta)". x3o3o3o3o3o3x3o - supane