Stericated 8-simplexes
![]() 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() Stericated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() Bistericated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
![]() Steritruncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() Bisteritruncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() Stericantellated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() Bisteri-cantellated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Stericanti-truncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() Bistericanti-truncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() Steri-runcinated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() Bisteri-runcinated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Sterirunci-truncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() Bisterirunci-truncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() Sterirunci-cantellated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() Bisterirunci-cantellated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Steriruncicanti-truncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() Bisteriruncicanti-truncated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Orthogonal projections in A8 Coxeter plane |
---|
In eight-dimensional geometry, a stericated 8-simplex is a convex uniform 8-polytope with 4th order truncations (sterication) of the regular 8-simplex. There are 16 unique sterications for the 8-simplex including permutations of truncation, cantellation, and runcination.
Stericated 8-simplex
Stericated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t0,4{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 6300 |
Vertices | 630 |
Vertex figure | |
Coxeter group | A8, [37], order 362880 |
Properties | convex |
Acronym: secane (Jonathan Bowers)[1]
Coordinates
The Cartesian coordinates of the vertices of the stericated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,1,1,1,1,2). This construction is based on facets of the stericated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Bistericated 8-simplex
Bistericated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t1,5{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 12600 |
Vertices | 1260 |
Vertex figure | |
Coxeter group | A8, [37], order 362880 |
Properties | convex |
Acronym: sobcane (Jonathan Bowers)[2]
Coordinates
The Cartesian coordinates of the vertices of the bistericated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,1,1,1,1,2,2). This construction is based on facets of the bistericated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Steritruncated 8-simplex
Steritruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t0,1,4{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter group | A8, [37], order 362880 |
Properties | convex |
Acronym: catene (Jonathan Bowers)[3]
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Bisteritruncated 8-simplex
Bisteritruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t1,2,5{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter group | A8, [37], order 362880 |
Properties | convex |
Acronym: bictane (Jonathan Bowers)[4]
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Stericantellated 8-simplex
Acronym: crane (Jonathan Bowers)[5]
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Bistericantellated 8-simplex
Acronym: bocrane (Jonathan Bowers)[6]
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Stericantitruncated 8-simplex
Acronym: cograne (Jonathan Bowers)[7]
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Bistericantitruncated 8-simplex
Acronym: bocagrane (Jonathan Bowers)[8]
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Steriruncinated 8-simplex
Acronym: capene (Jonathan Bowers)[9]
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Bisteriruncinated 8-simplex
Acronym: bacpane (Jonathan Bowers)[10]
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Steriruncitruncated 8-simplex
Acronym: coptane (Jonathan Bowers)[11]
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Bisteriruncitruncated 8-simplex
Acronym: bicpotane (Jonathan Bowers)[12]
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Steriruncicantellated 8-simplex
Acronym: coprene (Jonathan Bowers)[13]
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Bisteriruncicantellated 8-simplex
Acronym: bicprene (Jonathan Bowers)[14]
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Steriruncicantitruncated 8-simplex
Acronym: gacene (Jonathan Bowers)[15]
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Bisteriruncicantitruncated 8-simplex
Acronym: gobcane (Jonathan Bowers)[16]
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ![]() | ![]() | ![]() | ![]() |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ![]() | ![]() | ![]() | |
Dihedral symmetry | [5] | [4] | [3] |
Related polytopes
The 16 presented polytopes are in the family of 135 uniform 8-polytopes with A8 symmetry.
A8 polytopes | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() t0 | ![]() t1 | ![]() t2 | ![]() t3 | ![]() t01 | ![]() t02 | ![]() t12 | ![]() t03 | ![]() t13 | ![]() t23 | ![]() t04 | ![]() t14 | ![]() t24 | ![]() t34 | ![]() t05 |
![]() t15 | ![]() t25 | ![]() t06 | ![]() t16 | ![]() t07 | ![]() t012 | ![]() t013 | ![]() t023 | ![]() t123 | ![]() t014 | ![]() t024 | ![]() t124 | ![]() t034 | ![]() t134 | ![]() t234 |
![]() t015 | ![]() t025 | ![]() t125 | ![]() t035 | ![]() t135 | ![]() t235 | ![]() t045 | ![]() t145 | ![]() t016 | ![]() t026 | ![]() t126 | ![]() t036 | ![]() t136 | ![]() t046 | ![]() t056 |
![]() t017 | ![]() t027 | ![]() t037 | ![]() t0123 | ![]() t0124 | ![]() t0134 | ![]() t0234 | ![]() t1234 | ![]() t0125 | ![]() t0135 | ![]() t0235 | ![]() t1235 | ![]() t0145 | ![]() t0245 | ![]() t1245 |
![]() t0345 | ![]() t1345 | ![]() t2345 | ![]() t0126 | ![]() t0136 | ![]() t0236 | ![]() t1236 | ![]() t0146 | ![]() t0246 | ![]() t1246 | ![]() t0346 | ![]() t1346 | ![]() t0156 | ![]() t0256 | ![]() t1256 |
![]() t0356 | ![]() t0456 | ![]() t0127 | ![]() t0137 | ![]() t0237 | ![]() t0147 | ![]() t0247 | ![]() t0347 | ![]() t0157 | ![]() t0257 | ![]() t0167 | ![]() t01234 | ![]() t01235 | ![]() t01245 | ![]() t01345 |
![]() t02345 | ![]() t12345 | ![]() t01236 | ![]() t01246 | ![]() t01346 | ![]() t02346 | ![]() t12346 | ![]() t01256 | ![]() t01356 | ![]() t02356 | ![]() t12356 | ![]() t01456 | ![]() t02456 | ![]() t03456 | ![]() t01237 |
![]() t01247 | ![]() t01347 | ![]() t02347 | ![]() t01257 | ![]() t01357 | ![]() t02357 | ![]() t01457 | ![]() t01267 | ![]() t01367 | ![]() t012345 | ![]() t012346 | ![]() t012356 | ![]() t012456 | ![]() t013456 | ![]() t023456 |
![]() t123456 | ![]() t012347 | ![]() t012357 | ![]() t012457 | ![]() t013457 | ![]() t023457 | ![]() t012367 | ![]() t012467 | ![]() t013467 | ![]() t012567 | ![]() t0123456 | ![]() t0123457 | ![]() t0123467 | ![]() t0123567 | ![]() t01234567 |
Notes
- ^ Klitzing, (x3o3o3o3x3o3o3o - secane)
- ^ Klitzing, (o3x3o3o3o3x3o3o - sobcane)
- ^ Klitzing, (x3x3o3o3x3o3o3o - catene)
- ^ Klitzing, (o3x3x3o3o3x3o3o - bictane)
- ^ Klitzing, (x3o3x3o3x3o3o3o - crane)
- ^ Klitzing, (o3x3o3x3o3x3o3o - bocrane)
- ^ Klitzing, (x3x3x3o3x3o3o3o - cograne)
- ^ Klitzing, (o3x3x3x3ox3o3o3 - bocagrane)
- ^ Klitzing, (x3o3o3x3x3o3o3o - capene)
- ^ Klitzing, (o3x3o3o3x3x3o3o - bacpane)
- ^ Klitzing, (x3x3o3x3x3o3o3o - coptane)
- ^ Klitzing, (o3x3x3o3x3x3o3o - bicpotane)
- ^ Klitzing, (x3o3x3x3x3o3o3o - coprene)
- ^ Klitzing, (o3x3o3x3x3x3o3o - bicprene)
- ^ Klitzing, (x3x3x3x3x3o3o3o - gacene)
- ^ Klitzing, (o3x3x3x3x3x3o3o - gobcane)
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, wiley.com, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "8D uniform polytopes (polyzetta)". x3o3o3o3x3o3o3o - secane, o3x3o3o3o3x3o3o - sobcane, x3x3o3o3x3o3o3o - catene, o3x3x3o3o3x3o3o - bictane, x3o3x3o3x3o3o3o - crane, o3x3o3x3o3x3o3o - bocrane, x3x3x3o3x3o3o3o - cograne, o3x3x3x3ox3o3o3 - bocagrane, x3o3o3x3x3o3o3o - capene, o3x3o3o3x3x3o3o - bacpane, x3x3o3x3x3o3o3o - coptane, o3x3x3o3x3x3o3o - bicpotane, x3o3x3x3x3o3o3o - coprene, o3x3o3x3x3x3o3o - bicprene, x3x3x3x3x3o3o3o - gacene, o3x3x3x3x3x3o3o - gobcane